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In this paper, a fully implicit numerical model of the three-dimensional thermoha-
line ocean circulation is presented. With this numerical model it is possible to follow
branches of steady states in parameter space and monitor their linear stability. Also,
transient flows can be computed allowing much larger time steps than those possi-
ble with explicit schemes. By using recently developed solvers for linear systems
of equations and for generalized eigenvalue problems, results for reasonable spatial
resolution can be obtained. Bifurcation diagrams and transient flows are computed
for typical flows in a single hemispheric basin situation, with focus on (i) the per-
formance of the methodology and (ii) the new type of information which can be
obtained on these flows. g 2001 Academic Press
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1. INTRODUCTION

Processes controlling the changes of the large-scale density driven component o
ocean circulation, called the thermohaline ocean circulation, take place on very large t
scales since deep ocean velocities are small and mixing is slow. Typically, the equilibra
time scale of temperature and salinity fields is in the order of 1000 years. Hence, if char
in the surface forcing occur, such as in the freshwater flux or heat flux, it takes a couple
thousand years to reach a new equilibrium state [36].

Itis important to understand the different equilibria of the thermohaline circulation unc
given forcing conditions. Changes in circulation patterns affect the global climate st
because of changes in the poleward heat transport [4]. Studies with simple box oc
models [39, 48] have indicated that several equilibria may be stable under the same for
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conditions. Similar results were obtained for two-dimensional ocean models [8, 31, -
and zonally integrated models [29, 52]. In three-dimensional single hemispheric sec
models, two different equilibrium flow patterns are found [45] when the strength of tt
freshwater flux forcing is large enough. When the amplitude of the forcing is increas
even more, several types of time-dependent behavior are found. Variability on deca
interdecadal, and centennial time scales is quite common and even so-called flushes ay
which are associated with a complete reorientation of the circulation pattern on very Ic
times scales [50]. Multiple equilibria and sudden transitions in the thermohaline circulati
have also been found in Atlantic basin models [5] and even in a globally coupled oce:
atmosphere model [26]. An important issue in global climate change is what happens to
thermohaline circulation, when the atmospheric concentration of greenhouse gases, su
CO,, isincreased. Some models predict a temporary decrease in strength of this circula
while others show a total collapse [27].

Nearly all (relatively) low-resolution ocean circulation models that have been used
study the stability of the thermohaline circulation use an explicit time discretization, such
Leap-Frog or Adams—Bashforth schemes. Explicit schemes are relatively easy to implen
but suffer from a substantial drawback. The time step is limited because of numeri
amplification of truncation errors (numerical stability) rather than because of the tempc
changes of the numerical solution. The time step becomes even more restricted as
spatial resolution increases. These properties are undesirable for studies of changes |
thermohaline circulation where integration times of at least a few thousand years are des
To decrease the number of time steps, “false” transient methods, which allow for larger ti
steps in the deep ocean, are very common [6]. However, apart from the fact that this r
distort the transient flow, the time steps are still orders of magnitude smaller than the des
integration time.

At the moment, long integration times are achieved only by relatively low resolutic
models. For example, in models usinghbrizontal direction on a spherical grid, typical
time steps can be taken of a few hours. In the coupled GFDL model, such a horizol
resolution has been used for climate impact studies of increasete@€ds [27]. Although
current climate models typically usé horizontal resolution and about 20 vertical levels
[41, 51], long integration times are so expensive that it is impossible to perform detai
parameter studies of the model behavior.

Since the approach to an equilibrium state is very slow for the three-dimensional th
mohaline circulation, the use of implicit time discretization methods seems worthwhi
In implicit methods, the time step is not limited by numerical stability, but by the ac
curacy of the solution. The latter is in turn determined by the temporal changes in
numerical solution. However, implicit methods lead to large linear systems of equatio
which are often ill-conditioned and hence troublesome to solve. For two-dimensiol
problems, direct solvers may be used but soon memory limitation boundaries are hit
three-dimensional problems. Iterative methods are needed to solve these linear systel
equations.

Implicit techniques are strongly related to the ability to solve the steady equations
rectly without using any time-marching techniques. The computation of steady solution:s
parameter space is of interest because different regimes of behavior, for example a re
of multiple solutions, can be determined systematically. This is usually done with so-cal
continuation techniques combined with a Newton—Raphson-like process. When an effic
eigenvalue solveris also available, the linear stability of these steady states can be detern
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simultaneously. Methods to perform these type of computations were presented in [13]
applied to the two-dimensional Rayleigh—Benard problem. However, with these methoc
is still difficult to handle three-dimensional flows, although some specific problems col
be solved [10].

Semi-implicit methods are being used (e.qg., in the LSG model [25] and in the POP ma
[14]), but fully implicit large-scale three-dimensional ocean models have not been develo
so far. In our opinion, the breakthrough to realize long time scale high-resolution simulatic
of the ocean must come from a combination of fully implicit and explicit time-discretizatic
techniques. Both are needed to handle both small and large time scale variability separz
The implicit transient method can be run at lower resolution and is used to compute
envelope of the fast transients, which develops on long time scales. Within this envelc
the fast time scale variability, which can only be determined at very high resolution, is th
computed with explicit methods.

A first step toward this goal is the ability to handle coarse resolution ocean models w
implicit methods. In this paper, we present the techniques to do this and give an impres
of their performance. For the latter, we apply them to a low-resolution three-dimensio
model of the thermohaline ocean circulation in a single-hemispheric basin, represen
the North Atlantic. The formulation and implementation details of this model are give
in Section 2. The techniques to (i) compute steady solutions in parameter space, tc
determine the linear stability of a steady state, and to (iii) monitor transient flows o\
long time scales are presented in Section 3. In the Sections 4 to 6, steady thermoh:
flows, their linear stability, and their typical temporal behavior are presented. Focus
on the capabilities of the numerical techniques and the new information obtained on
flows.

2. THE OCEAN MODEL

In this paper, we apply the techniques to be presented in Section 3 to an ocean mq
which contains the basic fluid dynamics, but does not represent the ocean physics
particular the mixing of momentum, heat, and salt) in a “state-of-the art” way. Moreowv:
the configuration chosen is one that has a simple geometry to avoid additional complex
introduced by continental geometry and bottom topography. In a way, this is the first ste|
the development of these types of implicit ocean models; in the discussion we will comm
on prospects of handling additional details.

2.1. Governing Equations

Consider a sector flow domaif, ¢e] x [0s, On] representing an ocean basin on a
sphere with radius. The basin is rotating with angular veloct®y= 7 29 and has constant
depthD. The ocean velocities in eastward and northward directions are indicatedrzy
v, the vertical velocity is indicated hy, the pressure bp, and the temperature and salinity
by T and S, respectively. Vertical and horizontal mixing of momentum and of heat ar
saltis represented by eddy diffusivities with horizontal and vertical friction coefficients
and Ay for momentum, and horizontal and vertical diffusiviti€s; andKy, for heat. The
mixing coefficients of salt are taken equal to those of heat. A linear equation of state
assumed with expansion coefficients andas, reference temperatufig, salinity §, and
density pg. The governing equations, using the shallow-layer approximdiigrn < 1,
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The ocean circulation is driven by a wind strés®, 8) = (%, t?), wherer is the
amplitude andz?, t%) provides the spatial pattern. The thermohaline component of tt
circulation is driven by heat and freshwater fluxes at the surface. The downward h
flux Qoa is assumed proportional to the temperature difference between the ocean sur
temperature and a prescribed atmospheric temperggure., Qoa = Bt (1 Ts — T), with
Bt being the interfacial exchange coefficient of heat [20], and the dimensionless param
nt is introduced to control the amplitude @&. The freshwater flux is converted to an
equivalent salt flux and is simply a prescribed dimensionless fun&onith amplitude
Fo. At the ocean—atmosphere surface, the boundary conditions then become

ou v
00Av 97 70t%;  poAv 27 t’; w=0 (2a)
oT S
Ky— =B Ts—T); Ky— = FyFs. 2b
e T(n1Ts ) e oFs (2b)

The transfer of heat, freshwater, and momentum from the surface downward occur
thin boundary layers, i.e., the Ekman layer for momentum transfer. Although this may
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explicitly resolved [24], we follow the methodology applied in many low resolution ocee
general circulation models. Here, the surface forcing is distributed as a body forcing ov
certain depth of the upper ocean using a vertical profile fungian More explicitly, the
right-hand side of the horizontal momentum (1a) and (1b), temperature (1€), and sali
(1f) equations are extended with the source terms

0 __
Q? =g(z )p Hm ¢ Ql= g(Z)ponr (3a)
T T F
Qr = g(z)'”S—T; Qs= 9@~ Fs (3b)

whereH, is a typical vertical scale of variation of the functigiz) andzy is a restoring
time scale to the atmospheric forcing. Using these source terms, the boundary condit
for temperature, salinity, and wind stress at the ocean—atmosphere boundary are che
into no-flux conditions. This guarantees, for example, that the surface integral of the f
flux is zero for each steady solution [46].

A nondimensional temperaturk, salinity S, and pressuré are introduced through
T=To+ATT, S= S+ ASS and p = —pogz+ 2Q0roUpo P, Where a characteristic
horizontal velocity is indicated by . The governing equations are further nondimension
alized using scaleg, D, U, DU/rg, ro/U, andty for horizontal length, vertical length,
horizontal velocity, vertical velocity, time, and wind stress, respectively and become

Du .
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where the hats are dropped for convenience. On the lateral walls, slip conditions are
scribed to allow for two-dimensional solutions in particular cases, and the heat and
fluxes are zero. The bottom of the ocean=(—1) is assumed to be flat, isolated, and
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impermeable to salt. The nondimensional boundary conditions are hence formulated a

du _ dv 0T 39S

z=0,-1: —= —-—=w=-—=-—=0 (5a)
dz 0z dz 0z
dv  oJw dT 9S

¢ = dw, P& 00 09 90 99 (5b)
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The parameters in these equations are the Rosshy numiie Rayleigh numbeRa,
the vertical and horizontal Ekman numidey and Ey, the wind stress coefficieat,, the
vertical and horizontal inverse Peclet numb&s and Py, the Biot numberB, and the
freshwater flux strengtir. Expressions for these parameters are

U OlTATgD Ay E Ay 70
ER = ; = —" = —; = —, 0= —————
R 2Q0r0 2Q0Uro VT 20002 " T 202 2Q0p0HmU
asAS Khx Kvro o Forg
=——= Ph=r= A="7%3 =—; y=—
aT AT Urg ub Utr UASH;,

Apart from parameters in the forcing functions, suchasand the dimensionless pa-
rameterm ¢, which will be used to follow solutions continuously between nonrotating an
rotating cases, the system appears to contain 10 parameters. However, only 8 of thes
independent; when the salt field is rescaled with a facttine produchy appears, which
is an independent parameter. Moreover, the characteristic veldcitgn be chosen as a
function of other parameters, reducing the number of parameters again by one.

Given the surface wind stress the atmospheric temperatufg, the freshwater flux
Fs, and values of the dimensionless parameters, the time-evolution from a particular ini
condition is well defined.

2.2. Convective Adjustment

Since convection, which occurs in case of an unstable stratification, is not resolved by
hydrostatic model, an explicit representation is needed to obtain stably stratified solutic
A first variant of convective adjustment used in the model is local implicit mixing [53]
This means that when the flow becomes unstably stratified, the vertical mixing coeffici
of heat and salt is increased according to

39S 9T
=PO+ PSH(|A— — —;
Py = PO+ VH( - az,eH>, (6)

where PQ is the background inverse Peclet numbRf, is the convective inverse Peclet
number which is much larger th&, andH is a continuous approximation to the Heaviside
function. For the latter we use

1
HX; ) = 2<1+tanh€);>, )

whereey = 0.1. The ratio of mixing coefficients is monitored by a dimensionless paramet
Ca = PS/P?, and onlyC, — oo guarantees a stable stratification.
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Asecondvariantused, developedin [47], s called the global adjustment procedure (G/
The GAP starts off with the unstably stratified solution, sdy= u, and a constant field
of vertical diffusivity Pl (¢, 6, 2) = P2, with PQ the standard value of vertical diffusivity.
Within a stegk of an iterative loop oveN, steps, a stably stratified solutialy is constructed
from uX, using the convective adjustment procedure of [32]. A linear combination is take

0= (1— U + o, k=1, N,, 8)

wherewy increases from zero to unity N, steps (according tex = %(1 — cosmk/Nay)).
The vertical diffusivities are adjusted according to

k k
P >; L /02 ©

P — PCtanh( M —% ==
v v PS apk/oz

wherePy is an upper bound on the vertical diffusivities. In regions that are stabilized by
pass of the adjustment procedure; 1. For modest changes in the stratification (e.g., whe
w Is still small), this procedure guarantees that the vertical diffusive fluxes of buoyar
associated witlii andu are the same. For large valuedlbfi.e., in well-mixed areas when
wx — 1), the vertical diffusivity is bounded bip§. A Newton step (Section 3) is performed
on U to obtain a new estimaig*?, which includes an update of the velocity field. After
N, steps, the procedure is repeated with= 1 for k > N, until convergence is reached.
The resulting solutiong, is stably stratified, has enhanced diffusivities in the regions whel
convection took place, and has a velocity field that is consistent with the density field.

3. NUMERICAL METHODS

The equations are discretized in space using a second-order accurate control vol
discretization method on a staggered (Marker and Cell or Arakawa C-) gridiwth
0,...,N,j=0,...,M,k=0,..., L. The unknowns are labeled from left to right, from
south to north, and from bottom to top, with = —1 andz, = 0. Here, thep, T, andS
points are in the center and thev, andw points are on the cell boundaries. The function
g(2), appearing in (3), is chosen as

9(2) = H(Z— ZL-1, €n), (10)

with againH being the Heaviside function (7) wity = 1078. In this way, the input of each
quantity through the ocean—atmosphere surface (zonal and meridional momentum, hea
salt) is distributed as a source term over the most upper level. The spatially discretized m
equations can be written in the form

M 3—? = F(u) = L(u) + N(u, u), (11)

where the vectou contains the unknown@i, v, w, p, T, S) at each grid point and hence
has dimensio = 6 x N x M x L. The operator$1 andL are linear andN represents
the nonlinear terms in the equations.
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3.1. Continuation of Steady States

Steady-state solutions lead to a set of nonlinear algebraic equations of the form
F(u,p) = 0. (12)

Here the parameter dependence of the equations is made explicit throygtithensional
vector of parameters and hencé is a nonlinear mapping frolR9*P — RY.

As can be readily seen from the continuous form of the steady equations, the salil
is determined up to an additive constant. Moreover, as is in the general problem, also
pressure is determined up to an additive constant. To calculate a steady-state solutic
the system of equations, the equations are regularized (such that the Jacobian mat
nonsingular at each regular point) by fixing the pressure at a particular point (in our c:
at the point(N, M, L)). In addition, an integral condition fd8 is substituted for the last
equation from the salinity equation, such that salt is conserved exactly within the domz
Since the total dimensional salt contenpid/ §, whereV is the total volume of the basin,
the scaling for salinity provides the dimensionless form as

/ Scosddpdodz=0, (13)
\%

which is a constraint on the deviation of the salinity field from uniform conditions. T
determine branches of steady solutions of the (now slightly modified) equations (12) as
of the parameters, say, is varied, the pseudo-arclength method [22] is used. The branch
(u(s), u(s)) are parameterized by an “arclength” parametefn additional equation is
obtained by “normalizing” the tangent

Ug (U — Uo) + fio( — po) — AS =0, (14)

where(ug, o) is an analytically known starting solution or a previously computed poir
on a particular branch anfis is the step-length.

To solve the system of equations (12—-14), Euler—Newton continuation is uset Fhe
1) x (d + 1) Jacobian matrix7 (s) of (12—14) along a branch is given by

® F,
] ; (15)

-T .
Up Ko

J(s) =

where® is the matrix of derivatives df to u andF,, is the derivative to the parameter
During one Newton iteration, linear systems of the form

(3)- (L)

have to be solved, whereu andA i are updates during the Newton processaaddr 4. ;
derive from the right-hand sides of (12) and (14).

One can split the solution of (16) into two steps in which only linear systemsdwihe
solved. Ifz; andz, are solved from

bz =7 (17a)
Dz, = F,, (17b)
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then the solution4u, Au) is found from

lge1 — Uz

Ap == (18a)
Mo — UgZ2

AU =273 — Auzs. (18b)

3.2. Stability of Steady States

When a steady state is determined, the linear stability of the solution is considered
transitions that mark qualitative changes, such as transitions to multiple equilibria (pitchf
bifurcations of limit points) or periodic behavior (Hopf bifurcations), can be detected. Tl
linear stability analysis amounts to solving a generalized eigenvalue problem of the for

Ax = o BX, (29)

whereAd = ® andB = —M are in general nonsymmetric matricesBIfs nonsingular, the
problem reduces to an ordinary eigenvalue problem for the matrix4. Because only
real matrices are considered, there dreigenvalues, which are either real or occur as
complex conjugate pairs. However Afis singular, the eigenvalue structure may be mor
complicated; the set of eigenvalues may be finite, empty, or even the whole complex pl
[17]. In the particular model herd is a singular diagonal matrix because time derivative:
are absent in the continuity equation and vertical momentum equation.

Traditional eigenvalue solvers (e.g., the QZ algorithm [17]) which determine all eigenv
ues and, if desired, all eigenvectors are impossible to use. However, in many hydrodyne
stability problems, the instability of a certain steady flow pattern occurs only through a sn
number of modes and one is only interested to compute a few eigenmodes, i.e., those
eigenvalues closest to the imaginary axis (the “most dangerous” modes). Goldtiedch
[16] present three different versions of an algorithm to determine only a few of these m
dangerous modes suited for nonsymmetric eigenvalue problems. In [9], a combinatio
spectral transformations and the Arnoldi algorithm [33] is used and applied to determine
linear stability of steady (coating) flows. A variant of the methods in [9] was used in [13
being a combination of a spectral transformation and the simultaneous iteration techn
[38]. As in [9], the idea of the algorithm is to transform the eigenvalue problem in su
a way that the most dangerous modes become the most dominant modes (i.e., those
eigenvalues of largest norm). In this way, generalized power methods can be used or
transformed problem.

A new method to determine eigensolutions of large sparse generalized eigenvalue p
lems is the Jacobi—Davidson QZ-method (JDQZ) [37]. Using this method, one can cc
pute several, sam, eigenvalues and optionally eigenvectors of the generalized eigenva
problem

BAQ = aBaq, (20)

where A, B are matrices with complex entries andand 8 are complex numbers. The
pair («, B) is called an eigenvalue with corresponding eigenvegtdn each step of the
Jacobi—Davidson method, a search spdand a test space®/ are constructed and a hew
approximationdg of the eigenvector is selected from a search spacéogether with a



694 DIJKSTRA ET AL.

new approximation of the eigenvalue near a chosen targete details of the method are
described elsewhere [37] and the implementation of JDQZ is described in an earlier ver:
of our continuation code in [43].

3.3. Implicit Time Integration

A nice spin-off of steady-state solvers is the immediate availability of an implicit tim
integration scheme. Using a time st&p, and a time index, a class of two-level schemes
can be written as

un+1 —u"
M — OFU™H + (1— ®)Fu" = 0. (21)

For® = 1, this is the Backward Euler scheme and@&= 1/2, it is the Crank—Nicholson
scheme. The equations fof*! are solved by the Newton—Raphson technique and lead |
large systems of nonlinear algebraic equations, similar to that for the steady-state comg
tion. Note that within the time-dependent ocean model, the explicit integral condition for t
salinity equations can be omitted, because the total salinity is fixed by the initial conditio

It is well known that the Crank—Nicholson scheme is unconditionally stable for line:
equations. This does not mean that one can take any time step, since this quantity is
constrained by accuracy of the solution. Although the scheme is second-order accura
time, large discretization errors occur when the time step is too large. Another limitati
on the time step is the convergence domain of the Newton—Raphson process, which |
not necessarily converge for every time step. It will turn out that for the ocean mod
despite these limitations, much larger time steps can be taken than with an explicit ti
discretization.

3.4. Linear System Solvers

The linear sparse matrix solver which makes these computations possible is called m:
renumbering incomplete LU (MRILU). In the next section, the method will be briefly out
lined, followed by a section on the performance of the method on a typical case encounte
during steady-state computation in the ocean model.

3.4.1. Outline of the MRILU Method

MRILU consists of a multilevel preconditioner combined with a modern conjugate gr
dient type iterative method such as the BICGSTAB or the GMRES (Generalized Minin
RESidual) method [2]. As a preconditioning matrix, an incomplete factorization is co
structed of which the basic steps are outlined in Fig. 1. During the first step of the fact
ization (Step 1 in Fig. 1), a nearly independent set of unknowns is determined. For sp:
matrices this set has always more than one element, but to find the maximum set i
NP-complete problem. However, in our applications the fill per equation changes little a
with a simple recursive greedy algorithm, already sets close to the optimum are obtair
After the dropping of nondiagonal elements, this step yields a diagonal natias an
approximation ofA;; (Step 2 in Fig. 1.) Because the inverse of this matrix is also diagon
and sinceA;, andA;; are also sparse (even made sparser by dropping small elements dul
Step 3), the Schur-complement computed in Step 4 will also be sparse and the proces:
be repeated.
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Set A® = 4

for i=1:M
1. Make a reordering and partitioning of A¢~1)

An Az
Az Ag

such that the matrix A;; is sufficiently diagonal dominant.
2. Approximate A;; by a diagonal matrix A~u.
3. Drop small elements in A;5 and As;.

4. Make an incomplete LU factorization

I 0} |An A
AnAi 11| 0 A®

where A = Agy — Agy A7l A1z (Schur complement of Ajy).

end

Make an exact (or accurate incomplete) factorization of A(M),

FIG. 1. The basic steps of the MRILU algorithm used to solve the linear systems of equations.

During the factorization process, the fill increases and dropping is needed to get I
independent sets. The dropping strategy used in Steps 2 and 3 is based on the ra
the element at hand and the diagonal element, and on the amount dropped so far i
corresponding row and column. To handle the linear systems arising from the ocean mc
an extension of the MRILU algorithm for systems of partial differential equations is use
The matrix A;; is now a block-diagonal matrix in which the block size corresponds t
the number of unknowns per grid cell. For the ocean model, this number equals 6. It
observed that it is beneficial to do only a few reduction stédpss(nall, say 5) and then
make an accurate incomplete factorizationf6¥). The diagonal blocks in the andU
factor (Fig. 1) allow for parallelization and vectorization as is described elsewhere [3, 3

Loosely speaking, the matricd$’ can be seen as coarse grid approximations to the line
differential operator, and the L-factor in Step 4 as a restriction operator. The prolongat
operator is implicit in the U-factor and hence in multigrid terminology the factorizatio
corresponds to one V-cycle. Hence, the method is related to multigrid methods, which k
the well-known property to show convergence independent of the grid. In most convectic
diffusion problems we observe grid-independent convergence with MRILU, e.g., ab
300 flops per grid point are needed to gain six digits in solving Poisson’s equation in
with a standard 5-point discretization. This is quite low considering that in this case
matrix—vector multiplication is about 10 flops per grid point (see [1] for a comparisor
To obtain this grid-independent convergence behavior it is indispensable to use lump
which means that the diagonal in the factorization is adapted such that it produces the <
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result as the original matrix when applied to a constant vector [19]. Work to obtain al
grid-independent convergence for systems of partial differential equations is in progre
Meanwhile, the current version is already a substantial improvement over traditional
approaches.

MRILU is not a black box solver and requires a small set of parameters to be tur
for each particular problem. For a limited number of reduction stépsipall), the most
critical parameter is the drop tolerangen the ILU factorization of the last block. This
parameter determines the amount of memory to be used by the preconditioner. The sm
the tolerance, the larger the fill-in but the faster the convergence. Hence, the drop toler:
¢ provides a trade-off between cpu and memory usage.

The performance of MRILU can be improved by ampriori scaling of the matrix. For
scalar equations, MRILU is nearly independent of diagonal scaling. However, for equatit
arising from systems of partial differential equations, with more than one unknown f
point, the situation is different. In the latter case, the dropping is greatly influenced
diagonal block scaling. Consider, for example, the matrix

B

in which the zero is mimicking the zero block arising for the pressure in the continui
equation of the incompressible Navier—Stokes equationsolfg is smaller than the drop
tolerances, then the dropping of one of these causes the matrix to become singular, wh
is undesired. This can be avoided by scaling the equations and the unknowns such tf
andp are both of magnitude 1. In practice this singular case is rarely seen, but often m
coefficients for one type of unknown, say those related to the pressure, are dropped tha
those for another type, for example a velocity component. In general, the converge
of the final method is determined by the part in which most coefficients are droppe
making the higher fill in the other part of the matrix useless. This imbalance should
avoided in order to obtain an efficient method.

3.4.2. Performance on the Ocean Model

We show here timing and memory requirements of these methods to compute a typ
steady ocean flow with the model presented in Section 2. The more detailed procedur
compute a next steady statg {t) from one which has already been determineg (1),
(assuming that the tangeniy( 1) is available) when changing a parametethrough a
choice ofAs, is as follows:

(i) Startthe Newton process with initial solutiof = ug + Astig andu® = ug + jtAs.

(i) Compute the quantities, rq,1, and the Jacobiafd the latter in the form (15). The
Jacobian is assembled from local matrices representing the differential operators on
stencil as described in [11]. The matri is stored in compressed row storage (CRS)
form [34].

(iii) Solve the two systems (17) with the MRILU method. Since the matrix for botl
systems is the same, only one factorization is made and hence one preconditioning m
is constructed. The GMRES or BICGSTAB iteration is stopped when the absolute resic
is smaller than 1¢°.

(iv) Update the solutionukt! = uk + Auk, pktl = pk 4+ AuX within the Newton
iteration.



3D THERMOHALINE OCEAN CIRCULATION 697

TABLE |
Three Different Choices of Column and Row Scaling
Coefficients of the Matrix ® Appearing in (15)

Scaling u Y w p T S

1 Column 1. 1. 100. 1. 100. 10.
Row d¢p do dz dzx .01 .01 1

2 Column 1. 1. 100. 1. 10. 1.
Row d¢p do dz dzx .01 1 1.

3 Column 1. 1. 10. 1 100. 10.

Row d¢p do dz dzx .1 .01 A

(v) Repeat steps (ii) to (iv) until the Newton process converges, using a tolerance in
residue of 10°.

The most time-consuming step is the solution of the linear systems during step (iii) abc
It appears necessary to rescale the rows corresponding to the continuity, temperature
salinity equations to get a more balanced dropping as explained above. For this purf
also the columns associated with the vertical velocity, temperature, and salinity are resc:
Typical scaling factors used are listed in Table I, whege d6, anddz are the grid sizes
in zonal, meridional, and vertical direction. There are as many scaling coefficients as
number of equations per grid point. For simplicity, the same scaling is applied to e
diagonal block although this may not be the best choice. The scaling difference betw
choice 1 and 2 is only in the temperature and salinity equations, whereas that betwe
and 3 is in the continuity and vertical momentum equations.

As a typical case, we take the starting paigtas the point labeled (a) in Fig. 4a be-
low, y is chosen as the control parameter, and a step-sizesof 0.1 is considered.
The spatial resolution for this case is @20 x 16, which gives 38400 unknowns. It
takes four Newton iterations to converge to the next steady solution. Table Il shows

TABLE 1l
The Effect of the Drop Tolerancee and the Type of Scaling (as in Table 1) on the Timing
of an Average Newton Step During Continuation of Steady States

Scaling & (x10°) 0.6 1.2 2.4 4.8 9.6
1 Time (sec) 389 245 208 * *
Max. nonzero 328 220 148 * *
Max. iteration 20 33 55 * *
2 Time (sec) 299 232 365 * *
Max. nonzero 232 170 113 * *
Max. iteration 40 55 150 * *
3 Time (sec) ok 723 340 253 513
Max. nonzero *x 387 266 194 124
Max. iteration *x 21 32 51 300

Notes Within the Newton step, the MRILU preconditioner is called once and the BICGSTAB method is calle
twice, since two linear systems with different right-hand sides for the same matrix have to be solved, accordir
(17). Asingler entry indicates that the iterative process did not converge, whiledicates that the preconditioner
required too much memory.
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TABLE 11l
CPU Time and Memory Used for Different Resolutions for One
Newton Step Starting from Trivial Solution, with e =2.4 x 1073

Resolution CPU Time Memory Used Unknowns  Time/unknown

10x 10x 16 29s 122 MB 9,600 Bx 103
20x 20x 16 194 s 286 MB 38,400 B x 1078
30x 30x 16 1527 s 712 MB 86,400 Ix 1072

effect of the drop tolerance and the different scalings on the performance of MRIL
(combined with BICGSTAB) during step (iii). Maximum values were taken over the for
Newton steps, and the test was done on a Compaq XP1000 500MHz workstation with 1
memory.

For each value of the drop tolerance, we have also listed the maximum numbel
BICGSTAB iterations and the maximum of the average number of nonzero elements
row in the incomplete LU factorization, the latter being an indicator of the memory requir
ments for the preconditioner. For the scaling 1, increasing the drop tolerance reduces
memory requirements while increasing the number of iterations. Increasing factor 2
typically doubles the number of BICGSTAB iterations, but decreases the time for the p
conditioner. Although the drop toleranee= 2.4 x 10~2 gives the fastest convergence for
the BICGSTAB iteration, this iteration does not convergesfer 4.8 x 10-3. The results
also show that the performance of the linear solver is quite sensitive to the choice of sca
coefficients. When the coefficients of the vertical momentum and continuity equation
not scaled properly, the method only converges when the drop tolerance is largesWhe
becomes too small, too many fill-in occur and the incomplete LU factorization requires t
much memory. A proper scaling of the temperature and the salinity equations can reduc
memory required (scaling 2), but this does not automatically lead to faster converger
The results indicate that it is worthwhile to perform this type of sensitivity analysis f
the method. In principle, the convergence of the Newton process does not depend or
drop tolerance, when the linear systems are solved accurately enough. However, if
BICGSTAB residue has not decreased below the desired tolerance due to a large valt
the drop tolerance (for example, because only a maximum number of iterations is allow:
this can deteriorate the convergence of the Newton process. In the results shown in the
sections, we have used scaling 1 and 1.2 x 1073,

To give animpression how the performance scales with grid size, from the starting solut
Uo = uo = 0, one stepAs = 0.1 was taken into the direction a@f-. For a drop tolerance
e = 2.4 x 103, the CPU-time and memory required to solve the linear systems within o
Newton step is shown in Table Ill. Although the computational cost for the linear solver f
this problem depends on the parameters chosen, it is observed that the computationa
per unknown increases substantially with the number of unknowns.

4. RESULTS FOR A SECTOR BASIN

To apply these numerical techniques to the ocean model, a single-hemispheric basin s
was chosen. The domain is a°6@ide sector in longitude, withhy = 290 andgg = 350°
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between latitudess = 10°N and 6y = 70°N, which is comparable in size to the North
Atlantic, and has a constant dedih= 4000 m.

The surface buoyancy forcing is idealized, by prescribing the surface tempéeFaamd
the surface freshwater fluxs as

Ts(®) = COS(n 6~ bs ) (22a)
On — Os
cog(m 2=%)
F — On —Os ) 22
s(6) ST — (22b)

Note that in this case the dimensional meridional temperature difference over the se
is equal to 2. The freshwater forcing is such that the integral over the surface is zel
which is a necessary condition for the existence of steady-state solutions. The wind fort
considered is an idealized profile for the North Atlantic representing a double gyre ty
wind stress [7], i.e., in dimensionless form

9 6) = —cos(Zn 6~ 05 >; ? = 0. (23)
On — 0Os

The dimensional temperature profilg, the freshwater flu¥s, and the wind stress pattern

7% are shown in Fig. 2. Note that the freshwater flux becomes strongly negative in

northern region of the basin, because the size of the basin decreases.

Standard values of the dimensional and dimensionless parameters are listed in Tabl
Although the mixing of heat and salt is modeled in a crude way, by just assuming cons
horizontal and vertical coefficients, the values listed in Table IV are typical for low-resolutic
ocean models. Below, we will also consider a case in which these values are increase
make computation over the different regimes easier. Note that in the standard case, 1
is no convective adjustment and the horizontal friction coeffickntis rather large. The
effect of convective adjustment on the solutions will be considered explicitly by varyir
the paramete€, or using the GAP, as explained above.

-3 ]
10 20 30 20 50 60 70
)

FIG. 2. Plot of the patterns of the forcing functions for the restoring temperdaigrihe freshwater fluxs,
and the zonal wind stress.
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TABLE IV
Standard Values of Parameters Used in the
Numerical Calculations

2Q=14-10"*[s] ro=6.4-10° [m]
To=1.0-10"[Nm?] D=4.0.10° [m]
Fo=10-10"[ms] U=10-101[ms1]
po=1.0-10° [kg m3 AT =1.0[K]
ar=16-10*[K] 7+ = 75 [days]

Ay=16-10 [m?s?] A, =10-10°%[m?s?]

Ky =10-10°[m?s] Ky =1.0-10"*[m?s]

AS=10] as=7.6-10"[-]

Cp=42-10°[Jkgs] $=350[-]

g=9.8[ms? To=15.0 [K]

Hp = 250 [m] KE=0.0[m? s]

Ra=4.2.107? A=T7.6

y=2.6-102 Pd=15.10"2

Ey=27-107 P=39.10"

Ey=43-10"7 B=10
nr =10.0 o, =27-1072
C,=0.0 er=11-10"*

Note Convective adjustmentis turned off in the standard case.

The value ofAy is bounded from below by the thickness of the boundary layers whic
develop near the continents. Near the western boundary, the Munk frictional boundary le
thickness at a latitudéy scales with(Ay /Bo)Y3, wherepg = 2 cosy/ro monitors the
variation of the Coriolis parameter. With a typical horizontal resolution°gftldis leads
to a typical lower bound oAy = 2.5 x 10* m®s! atfp = 45°. However, the thickness
of the Ekman layers near the continental walls have a typical widtt\gf/ fo)*/?, where
fo = 2Qq sinfy, which restricts the value oky to be larger than & 10° m?s~. To be on
the safe side, we took a value twice the latter one. In typical ocean models, values m
smaller are taken, but it has been shown that this leads to numerical waves near these b
aries which show up as wiggles in the steady-state solutions [23, 49]. It has furtherm
been shown that this large valueAf, does not affect the dominant geostrophic/hydrostati
balances over most of the domain. Consequentlyfigr= 1.6 x 10’ m?s1, the “classi-
cal” 1/3 power law is found in the relation between the overturning strength and the surfz
buoyancy forcing.

4.1. Basic Bifurcation Diagrams

In the first set of computations, steady states are computed as a function of the stre
of the freshwater fluy . By plotting a norm of the solution versus this control parametel
for every steady state computed, a so-called bifurcation diagram is obtained. As a norm
dimensional maximum of the meridional overturning streamfunctap)(is chosen, which
is computed as follows. The nondimensional overturning streamfunétimdefined by

v _ v
D= (24)

17: PR )
0z a0
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where

I3 13
17:/ v cost do; zE:/ w coSH do.
¢ b

W W

With the scaling used, the maximum dimensional volume transpgrt= roU D max|¥|
and this is expressed in Sverdrups (Sv), where £3¥° m®s1.

As a starting point, the two-dimensional case is considered, with zero wind forci
(a; = 0) and no rotatiom(; = 0). Zonally independent solutions can be found because
the free-slip boundary conditions on the east—west boundaries. For three different horizc
resolutions, 6, 3°, and 15°, each case with 16 equidistant vertical levels, the bifurcatio
diagrams are plotted in Fig. 3c. For this case, a véye= 102 m?s ! andKy = 8 x
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(©)

FIG. 3. (a)—(b) Meridional overturning streamfunctiodg©, z) for solutions at points marked (a) and (b)
in panel (c) on the curve for3esolution. (c) Bifurcation diagram for different horizontal resolutions and fixec
16 vertical levels. Maximum of the meridional overturning streamfunctibp)(in Sv versus the strength of the
freshwater forcingy).
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10° m?s1 were taken. The structure of the bifurcation diagrams, with two saddle no
bifurcations introducing a region of multiple equilibria is in correspondence with thos
from box-models [39, 42]. The structure of the multiple equilibria is found for all the
resolutions in Fig. 3c. However, the coarsest resolution results show spurious saddle
bifurcations due to numerical errors; these disappear on the finer grids.

A horizontal grid spacing of 3appears sufficient to capture the structure of the two
dimensional flows. Whep is small, the circulation is predominantly forced by the merid-
ional temperature difference and the circulation is from equator to pole as in Fig. 3a, wh
shows the solution at point (a) in Fig. 3c. Because of the realistic temperature differe
but the absence of rotation, the overturning is much too large compared to reality. -
first saddle node bifurcation occursjat= 0.7 and an unstable branch exists down to the
second saddle node at= 0.4. Along this branch, the solution changes from tempera
ture controlled, with overturning in the north, to salt controlled with overturning in th
south. On the stable branch for largerthe surface flow is from pole to equator and hence
predominantly forced by the meridional salinity gradient (Fig. 3b).

The bifurcation diagram obtained with Borizontal resolution in Fig. 3 is replotted in
Fig. 4a as the dotted curve. The “deformation” of this bifurcation diagram when rotati
is added (by increasing; from zero to one) and wind forcing (increasing the value:.of
from O up to its standard value) shows that with rotation, the multiple equilibria structu
disappears (dashed curve in Fig. 4a). The addition of wind does not change the bifurca
diagram (drawn curve in Fig. 4a) qualitatively, although the strength of the overturnil
changes.

In Fig. 4b, the bifurcation diagram for standard values of parameters as in Table
is plotted, which again shows the typical multiple equilibria structure also found in tt
high thermal diffusion two-dimensional case (Fig. 3a, dotted curve). Note that by decre
ing the thermal diffusivityKy, the overturning has decreased substantially, because
a reduction of the overall meridional buoyancy gradient. Consequently, the range o
where the multiple equilibria occur is shifted to much smaller values. The results indic:
that there is a qualitative correspondence between three-dimensional solutions and
dimensional solutions (and eventually box models) with respect to the existence of multi
equilibria [28]. However, the regimes of existence in parameter space may substanti
differ.

To show the main characteristics of the three-dimensional flows, in addition to the ov
turning streamfunction, also the velocity field at 250-m depth and meridional sections of
density and velocity field near the eastern boundary (where the largest gradients in the <
tions appear) ab = 347 are plotted. The solution at point (a) in Fig. 4a has an overturnin
of about 24 Sv (Fig. 5a). The main sinking area is located nedx $Bigs. 5b—5d) and
the flow has a strong zonal component at all latitudes. In the upper layer flow, one can
the effect of the Ekman mass transport, which is always perpendicular and to the right of
wind. For example, at 40 the wind is directed eastward, which gives a southward Ekma
transport. In the low latitude area, the thermally driven overturning and the Ekman tra
port are in the same direction and hence the northward flow is stronger. Because there
convective adjustment, the flow is not stably stratified (Fig. 5c¢), which causes the southe
position of the sinking region (Fig. 5d). Upwelling occurs mainly near the southern ai
western boundary (Fig. 5b) and the downwelling is concentrated in a relatively small a
near the eastern boundary and in the central part of the basin.
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FIG. 4. (a) ‘Deformation’ of the bifurcation diagram for the two-dimensional high diffusion c&se £
8 x 10 m?*s ! andKy = 102 m?s?) for n; = 0 and no wind (dotted curve) to the bifurcation diagram for
n¢ = 1 and full wind (drawn curve). An intermediate result, where wind forcing is absent (with 1) is also
shown (dashed curve). For all curves, the maximum of the meridional overturning streamfurigtias plotted
versus the strength of the freshwater forcipg. (b) Bifurcation diagram for standard values of parameters as ir
Table IV for the case where both wind and rotation are included.
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of the steady solution obtained from (a)—(d) w@h = 250. (a) and (e) Meridional overturning stream function
(in Sverdrups). (b) and (f) Velocity field near the surface (at 250 m depth). In this plot, vectors indicate t
horizontal velocity(u, v) at this depth and the contours represent the dimensionless vertical velaciglid
lines represent upwelling (flow out of the plane), dashed lines downwelling (flow into the plane). (c) and |
Density (dimensionless) and (d) and (h) velocity plot for a north-south vertical plane at a grid point just west fri
the eastern boundary (= 347). In the latter picture, the vectors indicate the w) velocity field, whereas the

contours represent the zonal velocity@again dimensionless).
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For comparison, wittC, = 250 (and for other parameter having the same values), tt
solution at point (a) in Fig. 4a transforms into that shown in Figs. 5e-5h. The enhan
mixing causes the overturning to extend to the northern boundary (Fig. 5e) and the streng
the overturning increases from about 24 Svto 39 Sv. The surface velocity field is only sligt
changed and mainly the position of the sinking region has shifted northward (Figs. 5f—-
The stratification is statically stable, except in the far north (Fig. 59).

In the standard case (Fig. 4b), the solutions for the location labeled (c) are showr
Fig. 6. For the standard ca€g = 0, the overturning flow (about 8 Sv) now extends to the
northern boundary (Figs. 6a and 6b). The effect of a smaller vallg,a§ clearly seen in
the vertical structure of the density field which is much more confined to the upper lay
(Fig. 6¢). The latter holds also for the flow field and consequently the sinking area is m
confined to the north (Fig. 6d) than for the high€y flows in Fig. 5. For the same value
of the parameters, the completely statically stable solution, computed with the GAP,
an overturning of 12 Sv (Fig. 6e). The flow field and density field are fairly similar to th
statically unstable solution, except in the northern regions (Figs. 6f—6h).

In each of the cases in Fig. 4, the flow becomes salinity controlled at largérich leads
to a southern sinking solution. For example, at the location labeled (b) in Fig. 4a, the sink
region of this solution (not shown) is located neariRpwhereas the overturning is about
30 Sv. Most of the downwelling occurs in the southern and western part of the basin.

5. STABILITY OF STEADY STATES

In the previous section, it was shown that branches of steady states could be comp
as a function of the freshwater flux strengtlusing continuation methods. In this section,
the stability of the solutions on these branches is addressed by solving the linear stak
problem with the Jacobi—Davidson QZ method. Part of the (drawn) branch of solutions
Fig. 4ais replotted in Fig. 7a, where the location of point (a) is again labeled. The stabi
of the solutions is now indicated by the line style: a solid line style indicates stability whi
a dotted linestyle denotes an unstable branch. Bifurcations are indicated by markers &
triangle indicates a Hopf bifurcation.

The real and imaginary part of an eigenvectes Xg +-iX; corresponding to a complex
conjugate pair of eigenvalues= o, +io; provide the time periodic disturbance structure
P(t) with angular frequency; and growth rates; which oscillates around the steady
state, i.e.,

P(t) = €' [xgcos(ait) — X Sin(oit)] . (25)

The evolution of this perturbation can be followed by looking for examplé(gt{f) =X
and then aP(0) = xg.

For the high diffusion case, the real part (marked with a diamond) and imaginary p
(marked with a square) of the “most dangerous” modes are plotted in Fig. 7b, with a co
sponding line style indicating the same eigenpairyAt 1.55 x 102, the left endpoint of
the curve in Fig. 7a, the first mode (dotted curve in Fig. 7b) is stationary with slightly negat
real part. The next “most dangerous” mode is an oscillatory mode (drawn curves in Fig.
having a frequency oé; = 0.027, which corresponds to a perigd= 2rry/(Uoi) ~
400 years. Whew increases, the stability of these modes is not affected much, but ¢
other oscillatory pair shows up. This mode destabilizes pear5.07 x 1072, the latter



FIG. 6. (a)-(d) Flow pattern of the steady solution at the point labeled (c) in Fig. 4b. (e)—(f) Flow pattel
of the steady solution obtained from (a)—(d) with the GAP. (a) and (e) Meridional overturning stream functi
(in Sverdrups). (b) and (f) Velocity field near the surface (at 250 m depth). In this plot, vectors indicate t
horizontal velocity,(u, v) at this depth and the contours represent the dimensionless vertical velac@plid
lines represent upwelling (flow out of the plane), dashed lines downwelling (flow into of the plane). (c) and |
Density (dimensionless) and (d) and (h) velocity plot for a north-south vertical plane at a grid point just west fri
the eastern boundary (= 347). In the latter picture, the vectors indicate the w) velocity field, whereas the
contours represent the zonal velocity@again dimensionless).
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FIG. 7. (a) Bifurcation diagram for the casg = 1.0 andC, = 0, similar to the drawn curve in Fig. 4a.
The stability of the steady solutions is now indicated by its line style: a solid line style indicates stability wh
a dotted linestyle denotes an unstable branch. Bifurcations are indicated by markers, a triangle indicating a
bifurcation. (b) Reald;) and imaginary ¢;) part of the “most dangerous” eigenvalues along the branch in (a)
Similar linestyle indicates the same eigenpair and real and imaginary parts are labeled.

corresponding to the location &f; in Fig. 7a. The time scale of oscillation of this mode
(o1 = 2.92) is about 4 years. In the high diffusion case, the decadal mode turns outto be
sitive to the changes in the stratification in the northern basin arising through the applica
of convective adjustment is applied. However, the centennial modes and the nonoscilla
mode are very robust.
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TABLE V
Eigenvalueso = o, * io; of the Most Dangerous Eigenmodes
for (1) the Solution in Figs. 6a—6d under Restoring Conditions
and (2) for the Solution in Figs. 6e—6h under Prescribed Flux

Conditions
Eigenvalue ot ot a? o?
1 -35x 10°° 0.0 0.0 0.0
2 —2.3x 102 0.0 —1.6 x 1072 0.0
3 —25x 1072 0.0 —25x 1072 0.0
4-5 —26x102% +14x102 -28x102 +£17x102

Note.An entry ‘0.0’ indicates a value smaller than£0

In the standard case, the first six eigenvalues determining the stability of the solutiol
location (c) in Fig. 4b are shown in Table V. The first three of these modes are nonoscillat
modes, but the next two form a complex conjugate pair with centennial oscillation perit
The overturning streamfunction and the velocity field at mid-depth of this oscillatory mo
are plotted in Figs. 8a—8d. These patterns are very similar to the overturning oscillation fol
in two-dimensional models [12], which are caused by the propagation of salinity anomal
along the mean overturning flow. The oscillation can be seen as a periodic weakening
strengthening of the basic state overturning.

In Table V, also the leading eigenvalues are shown for the most “realistic” case witt
this idealized model and geometry. The stability is computed of the completely statice
stable solution shown in Figs. 6e—6h under prescribed flux conditions for the temperat
For the latter, the usual procedure is to diagnose the heat flux from the steady state
compute the stability under this diagnosed flux [18]. Because the perturbation tempera
is determined up to an additive constant, now an eigenvalue zero must appear (confir
numerically in Table V). The next two eigenvalues are real and eigenvalues 4 and 5 for
complex conjugate pair, having approximately the same oscillation frequency and gro
rate as the centennial mode in Figs. 8a—6d. Patterns of the overturning and mid-ds
velocity of this oscillatory mode are also plotted in Figs. 8e—8h and show indeed a cl
correspondence with those in Figs. 8a—8d.

6. TRANSIENT THERMOHALINE FLOWS

In this section, examples of transient flows, computed with the implicit time-steppir
method, are shown. Having the information of the steady states and their stability imr
diately provides guidelines for the interesting areas in parameter space. The latter is
region betweeiid; andH, in Fig. 7a, where limit cycles are expected and that arise throug
supercritical Hopf bifurcations.

However, first the transient behavior due to parameter variation will be considered. As
example, point (a) in the bifurcation diagram in Fig. 4a is taken as initial condition and
t = 0, the parametet, is increased from 0 to 250. The development of the flow with time
toward the steady solution in Figs. 5e—5h is monitored and the maximum overturgirgy
plotted in Fig. 9a. Each time step is indicated with a marker and the dimensional values
given in years. Initially, relatively small time steps have to be taken, because the solut
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FIG. 8. (a)—(d) Oscillatory eigenmode pair 4-5 for the solution in Fig. 6a—6d under restoring conditior
(e)-(h) Same eigenpair but now for the statically stable solution in Fig. 6e—6h under prescribed flux conditi
(a) and (e) Real part of the meridional overturning stream function. (b) and (f) Imaginary part of the meridio
overturning stream function. (c) and (g) Real part of the velocity field at 2000 m depth. (d) and (h) Imaginary ¢
of the velocity field at 2000 m depth.
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FIG. 9. (a) Overturning strength in Sverdrups versus dimensional time in years. The starting point is pc
(a) in Fig. 4a and initially, the paramet€y, is set at the value 250. Each point indicated gives the actual time ste
taken. (b) Plot of the dimensionless buoyancy productioB) (Volume integral of vertical velocityw, times

buoyancy,B = Ra(T — 1S)) versus time. The trajectory started at the same point as in (a), where the stez
state is unstable fa€, = 0. Here, a limit cycle is reached after an initial growth time of the instability of about

0.0006

100 years.

changes quite a bit in the northern region. However, during the approach to equilibri
time steps of up to 50 years can be taken. This clearly demonstrates the big advantag
implicit techniques when investigating sensitivity of solutions to parameter changes.
Results of total time to compute a solution for a certain time gte@re presented in
Table VI, where the initial condition is the last computed point in Fig. 9a. Here again, t
scaling 1 in Table | and the value of the drop-tolerasnee 1.2 x 10~3 was used. Increasing
the time step by a factor 100 increases the total time only be a factor 4, which is mai
due to the increased number of Newton iterations needed. The fill and also the numbe
iterations in BICGSTAB are not much affected by the magnitude of the time step.
As a second example, we investigate the finite amplitude decadal oscillation by star
with a steady solution at point (a) in Fig. 7a and perturb it slightly. After an initial growt
time of the instability, which is about 100 years, a periodic orbit is reached and it can
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TABLE VI
The effect of the Time Step on the Performance of the Newton
Process and Iterative Solver During the Implicit Time Integration

At (year) 0.5 1.0 4.0 20.0 50.0
Time (sec) 50 53 73 98 198
Max. nonzero 129 133 138 143 144
Max. iteration 16 16 16 22 29
Newton It. 3 3 4 5 10

followed with atime step of 0.5 year. The period is about 4 years, which is in corresponde
with the period determined from the eigenmode at Hopf bifurcation. Here, the combinat
of continuation techniques, eigenvalue solvers, and implicit time integration clarifies 1
origin of the oscillation as an instability of the steady flow.

The time steps, such that sufficiently accurate solutions are obtained during the
plicit time integration, can be determined by comparing the results of computations ove
certain time interval with several (in most cases three) different time steps. With the Cral
Nicholson scheme being second-order accurate, in this way also the absolute accurac
be determined. For the case in Fig. 9a, different time steps are therefore taken in the be
ning of the integration than those in later stages. For the case in Fig. 9b, a fixed time
was taken since the solution oscillates with fixed frequency.

7. DISCUSSION

In this paper, we have presented a new fully implicit model of the thermohaline oce
circulation suitable for the study of long time scale variability, such as centennial and lar
time scale oscillations. The results shown for a sector model are the first of its kind, wh
fully implicit techniques are used and where indeed very long time step can be taken. T
makes the approach very well suited for sensitivity studies, similar to those which he
been done for the two-dimensional flows [12, 44].

The key to being able to use these long time steps is the solution of the large lin
systems of equations with iterative solvers. The combination of the MRILU preconditioni
technique with the BICGSTAB solver enables one to compute solutions to the ste:
equations. Tuning of the parameters in MRILU is required and rescaling of the Jacok
matrix is necessary to achieve efficiency. Once this has been done for the steady cast
performance of MRILU improves in the time-dependent implicit time stepping case, sin
the Jacobian matrix becomes better conditioned. All computations in the paper, which
still for a low resolution ocean model set-up (®rizontally and 16 levels vertically), could
therefore be performed on a XP1000 500 MHz workstation with 1 GB internal memo
The use of MRILU is not restricted to this particular application, since it has a large amol
of flexibility. It can be used on both structured and unstructured grids, with equidistant
nonequidistant grid spacing and there is a recipe available to tune the parameters withil
factorization step.

The combination of a continuation method for computing steady states, the Jacc
Davidson QZ method for the linear stability problem, and implicit time-stepping techniqu
for monitoring the time-dependent flow provides a powerful tool to understand the struct
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of the thermohaline flow solutions in parameter space. For the simple single basin conf
ration, the results presented here show that one is able to trace steady solution branche
arelevant parameter regime and to determine the most dangerous eigenmodes. It show
multiple equilibria in the high-diffusion, two-dimensional case disappear when rotation
taken into account, but that these reappear in the rotational standard (low diffusion) regi

In addition, decadal oscillations appear as instabilities on the three-dimensional w
and thermohaline driven flow. For the high diffusion case considered here, the unste
stratification in the northern region of the basin turns out to be important, since these ma
stabilize when the steady flow is statically stable. However, in the standard case, these
of modes arise as interdecadal instabilities [40] when the vallg,ois decreased. These
modes can indeed be related to the many examples of (inter)decadal variability fount
low resolution ocean models [21]. The results also indicate that centennial oscillations a
very robust feature within these models, but they turn out to be stable under the forcing
parameters chosen here. It appears that these modes become exited in a slightly diff
parameter regime (small& ) when stochastic noise is included in the heat flux forcinc
to give centennial oscillatory behavior, superposed on the dominant interdecadal beha

The ocean model used here is one which contains the basic fluid dynamics, but |
still some distance from “state of the art” low-resolution ocean models. However, there
no principle difficulty to bridge this gap and in effect, many of the intermediate steps he
already beentaken. The only technical difficulty comes from the computation of the Jacok
matrix and the ability to solve the linear systems of equations. Continental geometry ¢
bottom topography can be easily included, by substituting equations (representing boun
conditions) at matrix level, similar to that done in shallow water models [35]. There is also
principle difficulty in implementing a nonlinear equation of state, although a dependency
the density on pressure complicates matters technically. The ocean model has already
coupledto an energy balance atmosphere model, and changesin surface boundary conc
are easily implemented. As in many ocean models, however, the issue of representing
nonresolved scales (mixing) is difficult. There is no principle difficulty in including &
rotation of the mixing tensor to represent the dominant mixing along isopycnal surfac
and to reduce diapycnal mixing. Also, a full parameterization as suggested in [15] can
included, although technical difficulties in calculating the Jacobian have to be overcor
Periodic boundary conditions can also be handled without any trouble, because the MR
method, used to solve the linear systems, does not require any preferred sparsity
banded) structure of the Jacobian matrix.

The results presented here are for a model configuration, for which the value of
horizontal friction is orders of magnitude larger than that considered realistic for the oce
and two orders of magnitude larger than those used in low-resolution ocean models. Th
necessary because of problems in resolving the horizontal (steady) Ekman boundary la
which contain large velocity gradients. In explicit models, the time step is small enough
allow adjustment of numerical errors due to nonresolved boundary layers through Kelv
type waves. The consequence is that no wiggles appear, but the solutions will effecti
never reach steady state. The issue how to handle these nonresolved boundary layer
steady state or large time step set-up is outside the scope of this paper. We want to s
that high viscosity is not a restriction of the use of the methodology of continuation a
implicit time stepping, which has been the focus of this paper. When the horizontal viscos
is taken spatially dependent and artificially increased only near the southern and eac
boundaries, flows can be computed for much smaller interior horizontal viscosities.
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Even with the present restriction of these fully implicit models to high viscosity, many il
teresting and physically relevant problems still can be tackled. Indeed, for high viscosity,
flows computed satisfy geostrophic and hydrostatic balances, but horizontal friction en
atleading order in the interior potential vorticity balance. Under wind forcing only, the int
rior flow has a small east—-west asymmetry, with little developed western boundary curri
When the horizontal friction is decreased, the east—west asymmetry and the strength c
gyresincreases. However, down to horizontal viscosity values used in low-resolution exp
ocean models, there will be a unique wind-driven solution and the nonlinear western bot
ary current regime is not yet reached. Although potentially this change of flow may hav
strong impact on the steady states of the full three-dimensional flows in these sector mo
we think that there will be no changes in the qualitative structure of the bifurcation diagrar

The analysis of the physical mechanisms of the existence of both the multiple equilit
and the oscillatory modes of variability [40, 47] indicates that these phenomena are ther
dynamically controlled. For example, the salt-advection feedback is responsible [11] for
occurrence of the multiple equilibria, while for the (inter)decadal modes of variability, eas
west propagation of density anomalies and their effect on the meridional and zonal overt
ing are essential [40]. In these cases, the details of the momentum balances are not cruc
long as a flow response is generated to density anomalies. For essentially three-dimens
features, such as the (inter)decadal oscillations, a geostrophic/hydrostatic response
quired, which can be represented in the high viscosity models used here [40]. Other feat
(multiple equilibria, centennial oscillations) occur already in two-dimensional models, sol
of which have only a frictional/hydrostatic momentum balance [8, 12, 42, 44]. However, ¢
tainly the strength of the flow is dependent on the viscosity and hence quantitative char
may occur in the bifurcation diagrams. Hence, it is expected that lowering the horizor
viscosity will introduce shifts in bifurcation points but that no new flow regimes of ocee
circulation regimes will appear.

To summarize, while the techniques are applied here only to a relatively simple moc
the numerical methods seem capable of attacking the problems of the physics of mult
equilibria and low-frequency ((inter)decadal to centennial time scale) oscillations of t
large-scale ocean circulation systematically. This is important for understanding the fac
which control stability and variability of the thermohaline ocean circulation.
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