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In this paper, a fully implicit numerical model of the three-dimensional thermoha-
line ocean circulation is presented. With this numerical model it is possible to follow
branches of steady states in parameter space and monitor their linear stability. Also,
transient flows can be computed allowing much larger time steps than those possi-
ble with explicit schemes. By using recently developed solvers for linear systems
of equations and for generalized eigenvalue problems, results for reasonable spatial
resolution can be obtained. Bifurcation diagrams and transient flows are computed
for typical flows in a single hemispheric basin situation, with focus on (i) the per-
formance of the methodology and (ii) the new type of information which can be
obtained on these flows. c© 2001 Academic Press
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1. INTRODUCTION

Processes controlling the changes of the large-scale density driven component of the
ocean circulation, called the thermohaline ocean circulation, take place on very large time
scales since deep ocean velocities are small and mixing is slow. Typically, the equilibration
time scale of temperature and salinity fields is in the order of 1000 years. Hence, if changes
in the surface forcing occur, such as in the freshwater flux or heat flux, it takes a couple of
thousand years to reach a new equilibrium state [36].

It is important to understand the different equilibria of the thermohaline circulation under
given forcing conditions. Changes in circulation patterns affect the global climate state
because of changes in the poleward heat transport [4]. Studies with simple box ocean
models [39, 48] have indicated that several equilibria may be stable under the same forcing
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conditions. Similar results were obtained for two-dimensional ocean models [8, 31, 42]
and zonally integrated models [29, 52]. In three-dimensional single hemispheric sector
models, two different equilibrium flow patterns are found [45] when the strength of the
freshwater flux forcing is large enough. When the amplitude of the forcing is increased
even more, several types of time-dependent behavior are found. Variability on decadal,
interdecadal, and centennial time scales is quite common and even so-called flushes appear,
which are associated with a complete reorientation of the circulation pattern on very long
times scales [50]. Multiple equilibria and sudden transitions in the thermohaline circulation
have also been found in Atlantic basin models [5] and even in a globally coupled ocean–
atmosphere model [26]. An important issue in global climate change is what happens to the
thermohaline circulation, when the atmospheric concentration of greenhouse gases, such as
CO2, is increased. Some models predict a temporary decrease in strength of this circulation,
while others show a total collapse [27].

Nearly all (relatively) low-resolution ocean circulation models that have been used to
study the stability of the thermohaline circulation use an explicit time discretization, such as
Leap-Frog or Adams–Bashforth schemes. Explicit schemes are relatively easy to implement
but suffer from a substantial drawback. The time step is limited because of numerical
amplification of truncation errors (numerical stability) rather than because of the temporal
changes of the numerical solution. The time step becomes even more restricted as the
spatial resolution increases. These properties are undesirable for studies of changes in the
thermohaline circulation where integration times of at least a few thousand years are desired.
To decrease the number of time steps, “false” transient methods, which allow for larger time
steps in the deep ocean, are very common [6]. However, apart from the fact that this may
distort the transient flow, the time steps are still orders of magnitude smaller than the desired
integration time.

At the moment, long integration times are achieved only by relatively low resolution
models. For example, in models using 4◦ horizontal direction on a spherical grid, typical
time steps can be taken of a few hours. In the coupled GFDL model, such a horizontal
resolution has been used for climate impact studies of increased CO2 levels [27]. Although
current climate models typically use 1◦ horizontal resolution and about 20 vertical levels
[41, 51], long integration times are so expensive that it is impossible to perform detailed
parameter studies of the model behavior.

Since the approach to an equilibrium state is very slow for the three-dimensional ther-
mohaline circulation, the use of implicit time discretization methods seems worthwhile.
In implicit methods, the time step is not limited by numerical stability, but by the ac-
curacy of the solution. The latter is in turn determined by the temporal changes in the
numerical solution. However, implicit methods lead to large linear systems of equations,
which are often ill-conditioned and hence troublesome to solve. For two-dimensional
problems, direct solvers may be used but soon memory limitation boundaries are hit for
three-dimensional problems. Iterative methods are needed to solve these linear systems of
equations.

Implicit techniques are strongly related to the ability to solve the steady equations di-
rectly without using any time-marching techniques. The computation of steady solutions in
parameter space is of interest because different regimes of behavior, for example a regime
of multiple solutions, can be determined systematically. This is usually done with so-called
continuation techniques combined with a Newton–Raphson-like process. When an efficient
eigenvalue solver is also available, the linear stability of these steady states can be determined
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simultaneously. Methods to perform these type of computations were presented in [13] and
applied to the two-dimensional Rayleigh–Benard problem. However, with these methods it
is still difficult to handle three-dimensional flows, although some specific problems could
be solved [10].

Semi-implicit methods are being used (e.g., in the LSG model [25] and in the POP model
[14]), but fully implicit large-scale three-dimensional ocean models have not been developed
so far. In our opinion, the breakthrough to realize long time scale high-resolution simulations
of the ocean must come from a combination of fully implicit and explicit time-discretization
techniques. Both are needed to handle both small and large time scale variability separately.
The implicit transient method can be run at lower resolution and is used to compute the
envelope of the fast transients, which develops on long time scales. Within this envelope,
the fast time scale variability, which can only be determined at very high resolution, is then
computed with explicit methods.

A first step toward this goal is the ability to handle coarse resolution ocean models with
implicit methods. In this paper, we present the techniques to do this and give an impression
of their performance. For the latter, we apply them to a low-resolution three-dimensional
model of the thermohaline ocean circulation in a single-hemispheric basin, representing
the North Atlantic. The formulation and implementation details of this model are given
in Section 2. The techniques to (i) compute steady solutions in parameter space, to (ii)
determine the linear stability of a steady state, and to (iii) monitor transient flows over
long time scales are presented in Section 3. In the Sections 4 to 6, steady thermohaline
flows, their linear stability, and their typical temporal behavior are presented. Focus is
on the capabilities of the numerical techniques and the new information obtained on the
flows.

2. THE OCEAN MODEL

In this paper, we apply the techniques to be presented in Section 3 to an ocean model,
which contains the basic fluid dynamics, but does not represent the ocean physics (in
particular the mixing of momentum, heat, and salt) in a “state-of-the art” way. Moreover,
the configuration chosen is one that has a simple geometry to avoid additional complexities
introduced by continental geometry and bottom topography. In a way, this is the first step in
the development of these types of implicit ocean models; in the discussion we will comment
on prospects of handling additional details.

2.1. Governing Equations

Consider a sector flow domain [φW, φE] × [θS, θN ] representing an ocean basin on a
sphere with radiusr0. The basin is rotating with angular velocityÄ = η f Ä0 and has constant
depthD. The ocean velocities in eastward and northward directions are indicated byu and
v, the vertical velocity is indicated byw, the pressure byp, and the temperature and salinity
by T and S, respectively. Vertical and horizontal mixing of momentum and of heat and
salt is represented by eddy diffusivities with horizontal and vertical friction coefficientsAH

andAV for momentum, and horizontal and vertical diffusivitiesKH andKV for heat. The
mixing coefficients of salt are taken equal to those of heat. A linear equation of state is
assumed with expansion coefficientsαT andαS, reference temperatureT0, salinity S0, and
densityρ0. The governing equations, using the shallow-layer approximationD/r0¿ 1,
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The ocean circulation is driven by a wind stressEτ(φ, θ) = τ0(τ
φ, τ θ ), whereτ0 is the

amplitude and(τ φ, τ θ ) provides the spatial pattern. The thermohaline component of the
circulation is driven by heat and freshwater fluxes at the surface. The downward heat
flux Qoa is assumed proportional to the temperature difference between the ocean surface
temperature and a prescribed atmospheric temperatureTS, i.e.,Qoa = BT (ηT TS− T), with
BT being the interfacial exchange coefficient of heat [20], and the dimensionless parameter
ηT is introduced to control the amplitude ofTS. The freshwater flux is converted to an
equivalent salt flux and is simply a prescribed dimensionless functionFS with amplitude
F0. At the ocean–atmosphere surface, the boundary conditions then become

ρ0AV
∂u

∂z
= τ0τ

φ; ρ0AV
∂v

∂z
= τ0τ

θ ; w = 0 (2a)

KV
∂T

∂z
= BT (ηT TS− T); KV

∂S

∂z
= F0FS. (2b)

The transfer of heat, freshwater, and momentum from the surface downward occurs in
thin boundary layers, i.e., the Ekman layer for momentum transfer. Although this may be
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explicitly resolved [24], we follow the methodology applied in many low resolution ocean
general circulation models. Here, the surface forcing is distributed as a body forcing over a
certain depth of the upper ocean using a vertical profile functiong(z). More explicitly, the
right-hand side of the horizontal momentum (1a) and (1b), temperature (1e), and salinity
(1f) equations are extended with the source terms

Qφ
τ = g(z)

τ0

ρ0Hm
τφ; Qθ

τ = g(z)
τ0

ρ0Hm
τ θ (3a)

QT = g(z)
ηT TS− T

τT
; QS = g(z)

F0

Hm
FS, (3b)

whereHm is a typical vertical scale of variation of the functiong(z) andτT is a restoring
time scale to the atmospheric forcing. Using these source terms, the boundary conditions
for temperature, salinity, and wind stress at the ocean–atmosphere boundary are changed
into no-flux conditions. This guarantees, for example, that the surface integral of the heat
flux is zero for each steady solution [46].

A nondimensional temperaturêT , salinity Ŝ, and pressurêp are introduced through
T = T0+1TT̂ , S= S0+1SŜ and p = −ρ0gz+ 2Ä0r0Uρ0 p̂, where a characteristic
horizontal velocity is indicated byU . The governing equations are further nondimension-
alized using scalesr0, D, U , DU/r0, r0/U , andτ0 for horizontal length, vertical length,
horizontal velocity, vertical velocity, time, and wind stress, respectively and become
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where the hats are dropped for convenience. On the lateral walls, slip conditions are pre-
scribed to allow for two-dimensional solutions in particular cases, and the heat and salt
fluxes are zero. The bottom of the ocean (z= −1) is assumed to be flat, isolated, and
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impermeable to salt. The nondimensional boundary conditions are hence formulated as

z= 0,−1 :
∂u

∂z
= ∂v

∂z
= w = ∂T

∂z
= ∂S

∂z
= 0 (5a)

φ = φW, φE : u = ∂v

∂φ
= ∂w

∂φ
= ∂T

∂φ
= ∂S

∂φ
= 0 (5b)

φ = θS, θN :
∂u

∂θ
= v = ∂w

∂θ
= ∂T

∂θ
= ∂S

∂θ
= 0. (5c)

The parameters in these equations are the Rossby numberεR, the Rayleigh numberRa,
the vertical and horizontal Ekman numberEV andEH , the wind stress coefficientατ , the
vertical and horizontal inverse Peclet numbersPV and PH , the Biot numberB, and the
freshwater flux strengthγ . Expressions for these parameters are

εR = U

2Ä0r0
; Ra= αT1T gD

2Ä0Ur0
; EV = AV

2Ä0D2
; EH = AH

2Ä0r 2
0

; ατ = τ0

2Ä0ρ0HmU

λ = αS1S

αT1T
; PH = KH

Ur0
; PV = KVr0

U D2
; B = r0

UτT
; γ = F0r0

U1SHm
.

Apart from parameters in the forcing functions, such asηT and the dimensionless pa-
rameterη f , which will be used to follow solutions continuously between nonrotating and
rotating cases, the system appears to contain 10 parameters. However, only 8 of these are
independent; when the salt field is rescaled with a factorλ, the productλγ appears, which
is an independent parameter. Moreover, the characteristic velocityU can be chosen as a
function of other parameters, reducing the number of parameters again by one.

Given the surface wind stressEτ , the atmospheric temperatureTS, the freshwater flux
FS, and values of the dimensionless parameters, the time-evolution from a particular initial
condition is well defined.

2.2. Convective Adjustment

Since convection, which occurs in case of an unstable stratification, is not resolved by the
hydrostatic model, an explicit representation is needed to obtain stably stratified solutions.
A first variant of convective adjustment used in the model is local implicit mixing [53].
This means that when the flow becomes unstably stratified, the vertical mixing coefficient
of heat and salt is increased according to

PV = P0
V + Pc

VH
(

λ
∂S

∂z
− ∂T

∂z
; εH

)
, (6)

where P0
V is the background inverse Peclet number,Pc

V is the convective inverse Peclet
number which is much larger thanP0

V , andH is a continuous approximation to the Heaviside
function. For the latter we use

H(x; εH ) = 1

2

(
1+ tanh

x

εH

)
, (7)

whereεH = 0.1. The ratio of mixing coefficients is monitored by a dimensionless parameter
Ca = Pc

V/P0
V , and onlyCa→∞ guarantees a stable stratification.
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A second variant used, developed in [47], is called the global adjustment procedure (GAP).
The GAP starts off with the unstably stratified solution, sayu1 = u, and a constant field
of vertical diffusivity P1

V (φ, θ, z) = P0
V , with P0

V the standard value of vertical diffusivity.
Within a stepk of an iterative loop overNa steps, a stably stratified solutionuk

st is constructed
from uk, using the convective adjustment procedure of [32]. A linear combination is taken,

ũk = (1− ωk)uk + ωkuk
st k = 1, Na, (8)

whereωk increases from zero to unity inNa steps (according toωk = 1
2(1− cosπk/Na)).

The vertical diffusivities are adjusted according to

Pk+1
V = Pc

V tanh

(
0

Pk
V

Pc
V

)
; 0 ≡ ∂ρk/∂z

∂ρ̃k/∂z
, (9)

wherePc
V is an upper bound on the vertical diffusivities. In regions that are stabilized by a

pass of the adjustment procedure,0 > 1. For modest changes in the stratification (e.g., when
ωk is still small), this procedure guarantees that the vertical diffusive fluxes of buoyancy
associated with̃u andu are the same. For large values of0 (i.e., in well-mixed areas when
ωk → 1), the vertical diffusivity is bounded byPc

V . A Newton step (Section 3) is performed
on ũk to obtain a new estimateuk+1, which includes an update of the velocity field. After
Na steps, the procedure is repeated withωk = 1 for k > Na until convergence is reached.
The resulting solutionust is stably stratified, has enhanced diffusivities in the regions where
convection took place, and has a velocity field that is consistent with the density field.

3. NUMERICAL METHODS

The equations are discretized in space using a second-order accurate control volume
discretization method on a staggered (Marker and Cell or Arakawa C-) grid withi =
0, . . . , N, j = 0, . . . , M, k = 0, . . . , L. The unknowns are labeled from left to right, from
south to north, and from bottom to top, withz0 = −1 andzL = 0. Here, thep, T , andS
points are in the center and theu, v, andw points are on the cell boundaries. The function
g(z), appearing in (3), is chosen as

g(z) = H(z− zL−1, εH ), (10)

with againH being the Heaviside function (7) withεH = 10−6. In this way, the input of each
quantity through the ocean–atmosphere surface (zonal and meridional momentum, heat, and
salt) is distributed as a source term over the most upper level. The spatially discretized model
equations can be written in the form

M
du
dt
= F(u) = L(u)+ N(u, u), (11)

where the vectoru contains the unknowns(u, v, w, p, T, S) at each grid point and hence
has dimensiond = 6× N × M × L. The operatorsM andL are linear andN represents
the nonlinear terms in the equations.
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3.1. Continuation of Steady States

Steady-state solutions lead to a set of nonlinear algebraic equations of the form

F(u, p) = 0. (12)

Here the parameter dependence of the equations is made explicit through thep-dimensional
vector of parametersp and henceF is a nonlinear mapping fromRd+p→ Rd.

As can be readily seen from the continuous form of the steady equations, the salinity
is determined up to an additive constant. Moreover, as is in the general problem, also the
pressure is determined up to an additive constant. To calculate a steady-state solution of
the system of equations, the equations are regularized (such that the Jacobian matrix is
nonsingular at each regular point) by fixing the pressure at a particular point (in our case
at the point(N, M, L)). In addition, an integral condition forS is substituted for the last
equation from the salinity equation, such that salt is conserved exactly within the domain.
Since the total dimensional salt content isρ0V S0, whereV is the total volume of the basin,
the scaling for salinity provides the dimensionless form as∫

V
Scosθ dφ dθ dz= 0, (13)

which is a constraint on the deviation of the salinity field from uniform conditions. To
determine branches of steady solutions of the (now slightly modified) equations (12) as one
of the parameters, sayµ, is varied, the pseudo-arclength method [22] is used. The branches
(u(s), µ(s)) are parameterized by an “arclength” parameters. An additional equation is
obtained by “normalizing” the tangent

u̇T
0 (u− u0)+ µ̇0(µ− µ0)−1s= 0, (14)

where(u0, µ0) is an analytically known starting solution or a previously computed point
on a particular branch and1s is the step-length.

To solve the system of equations (12–14), Euler–Newton continuation is used. The(d +
1)× (d + 1) Jacobian matrixJ (s) of (12–14) along a branch is given by

J (s) =
[

8 Fµ

u̇T
0 µ̇0

]
, (15)

where8 is the matrix of derivatives ofF to u andFµ is the derivative to the parameterµ.
During one Newton iteration, linear systems of the form

J
(

1u
1µ

)
=
(

r
rd+1

)
(16)

have to be solved, where1u and1µ are updates during the Newton process andr andrd+1

derive from the right-hand sides of (12) and (14).
One can split the solution of (16) into two steps in which only linear systems with8 are

solved. Ifz1 andz2 are solved from

8z1 = r (17a)

8z2 = Fµ, (17b)
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then the solution (1u, 1µ) is found from

1µ = rd+1− u̇T
0 z1

µ̇0− u̇T
0 z2

(18a)

1u = z1−1µz2. (18b)

3.2. Stability of Steady States

When a steady state is determined, the linear stability of the solution is considered and
transitions that mark qualitative changes, such as transitions to multiple equilibria (pitchfork
bifurcations of limit points) or periodic behavior (Hopf bifurcations), can be detected. The
linear stability analysis amounts to solving a generalized eigenvalue problem of the form

Ax = σBx, (19)

whereA = 8 andB = −M are in general nonsymmetric matrices. IfB is nonsingular, the
problem reduces to an ordinary eigenvalue problem for the matrixB−1A. Because only
real matrices are considered, there ared eigenvalues, which are either real or occur as
complex conjugate pairs. However, ifB is singular, the eigenvalue structure may be more
complicated; the set of eigenvalues may be finite, empty, or even the whole complex plane
[17]. In the particular model here,B is a singular diagonal matrix because time derivatives
are absent in the continuity equation and vertical momentum equation.

Traditional eigenvalue solvers (e.g., the QZ algorithm [17]) which determine all eigenval-
ues and, if desired, all eigenvectors are impossible to use. However, in many hydrodynamic
stability problems, the instability of a certain steady flow pattern occurs only through a small
number of modes and one is only interested to compute a few eigenmodes, i.e., those with
eigenvalues closest to the imaginary axis (the “most dangerous” modes). Goldhirschet al.
[16] present three different versions of an algorithm to determine only a few of these most
dangerous modes suited for nonsymmetric eigenvalue problems. In [9], a combination of
spectral transformations and the Arnoldi algorithm [33] is used and applied to determine the
linear stability of steady (coating) flows. A variant of the methods in [9] was used in [13],
being a combination of a spectral transformation and the simultaneous iteration technique
[38]. As in [9], the idea of the algorithm is to transform the eigenvalue problem in such
a way that the most dangerous modes become the most dominant modes (i.e., those with
eigenvalues of largest norm). In this way, generalized power methods can be used on the
transformed problem.

A new method to determine eigensolutions of large sparse generalized eigenvalue prob-
lems is the Jacobi–Davidson QZ-method (JDQZ) [37]. Using this method, one can com-
pute several, saym, eigenvalues and optionally eigenvectors of the generalized eigenvalue
problem

βAq = αBq, (20)

whereA,B are matrices with complex entries andα andβ are complex numbers. The
pair (α, β) is called an eigenvalue with corresponding eigenvectorq. In each step of the
Jacobi–Davidson method, a search spaceV and a test spaceW are constructed and a new
approximationq̃ of the eigenvector is selected from a search spaceV , together with a
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new approximation of the eigenvalue near a chosen targetτ . The details of the method are
described elsewhere [37] and the implementation of JDQZ is described in an earlier version
of our continuation code in [43].

3.3. Implicit Time Integration

A nice spin-off of steady-state solvers is the immediate availability of an implicit time
integration scheme. Using a time step1t , and a time indexn, a class of two-level schemes
can be written as

M
un+1− un

1t
+2F(un+1)+ (1−2)F(un) = 0. (21)

For2 = 1, this is the Backward Euler scheme and for2 = 1/2, it is the Crank–Nicholson
scheme. The equations forun+1 are solved by the Newton–Raphson technique and lead to
large systems of nonlinear algebraic equations, similar to that for the steady-state computa-
tion. Note that within the time-dependent ocean model, the explicit integral condition for the
salinity equations can be omitted, because the total salinity is fixed by the initial conditions.

It is well known that the Crank–Nicholson scheme is unconditionally stable for linear
equations. This does not mean that one can take any time step, since this quantity is still
constrained by accuracy of the solution. Although the scheme is second-order accurate in
time, large discretization errors occur when the time step is too large. Another limitation
on the time step is the convergence domain of the Newton–Raphson process, which does
not necessarily converge for every time step. It will turn out that for the ocean model,
despite these limitations, much larger time steps can be taken than with an explicit time
discretization.

3.4. Linear System Solvers

The linear sparse matrix solver which makes these computations possible is called matrix
renumbering incomplete LU (MRILU). In the next section, the method will be briefly out-
lined, followed by a section on the performance of the method on a typical case encountered
during steady-state computation in the ocean model.

3.4.1. Outline of the MRILU Method

MRILU consists of a multilevel preconditioner combined with a modern conjugate gra-
dient type iterative method such as the BICGSTAB or the GMRES (Generalized Minimal
RESidual) method [2]. As a preconditioning matrix, an incomplete factorization is con-
structed of which the basic steps are outlined in Fig. 1. During the first step of the factor-
ization (Step 1 in Fig. 1), a nearly independent set of unknowns is determined. For sparse
matrices this set has always more than one element, but to find the maximum set is an
NP-complete problem. However, in our applications the fill per equation changes little and
with a simple recursive greedy algorithm, already sets close to the optimum are obtained.
After the dropping of nondiagonal elements, this step yields a diagonal matrixÃ11 as an
approximation ofA11 (Step 2 in Fig. 1.) Because the inverse of this matrix is also diagonal
and sinceA12 andA21 are also sparse (even made sparser by dropping small elements during
Step 3), the Schur-complement computed in Step 4 will also be sparse and the process can
be repeated.
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FIG. 1. The basic steps of the MRILU algorithm used to solve the linear systems of equations.

During the factorization process, the fill increases and dropping is needed to get large
independent sets. The dropping strategy used in Steps 2 and 3 is based on the ratio of
the element at hand and the diagonal element, and on the amount dropped so far in the
corresponding row and column. To handle the linear systems arising from the ocean model,
an extension of the MRILU algorithm for systems of partial differential equations is used.
The matrix Ã11 is now a block-diagonal matrix in which the block size corresponds to
the number of unknowns per grid cell. For the ocean model, this number equals 6. It was
observed that it is beneficial to do only a few reduction steps (M small, say 5) and then
make an accurate incomplete factorization ofA(M). The diagonal blocks in theL andU
factor (Fig. 1) allow for parallelization and vectorization as is described elsewhere [3, 30].

Loosely speaking, the matricesA(i ) can be seen as coarse grid approximations to the linear
differential operator, and the L-factor in Step 4 as a restriction operator. The prolongation
operator is implicit in the U-factor and hence in multigrid terminology the factorization
corresponds to one V-cycle. Hence, the method is related to multigrid methods, which have
the well-known property to show convergence independent of the grid. In most convection–
diffusion problems we observe grid-independent convergence with MRILU, e.g., about
300 flops per grid point are needed to gain six digits in solving Poisson’s equation in 2D
with a standard 5-point discretization. This is quite low considering that in this case a
matrix–vector multiplication is about 10 flops per grid point (see [1] for a comparison).
To obtain this grid-independent convergence behavior it is indispensable to use lumping,
which means that the diagonal in the factorization is adapted such that it produces the same
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result as the original matrix when applied to a constant vector [19]. Work to obtain also
grid-independent convergence for systems of partial differential equations is in progress.
Meanwhile, the current version is already a substantial improvement over traditional ILU
approaches.

MRILU is not a black box solver and requires a small set of parameters to be tuned
for each particular problem. For a limited number of reduction steps (M small), the most
critical parameter is the drop toleranceε in the ILU factorization of the last block. This
parameter determines the amount of memory to be used by the preconditioner. The smaller
the tolerance, the larger the fill-in but the faster the convergence. Hence, the drop tolerance
ε provides a trade-off between cpu and memory usage.

The performance of MRILU can be improved by ana priori scaling of the matrix. For
scalar equations, MRILU is nearly independent of diagonal scaling. However, for equations
arising from systems of partial differential equations, with more than one unknown per
point, the situation is different. In the latter case, the dropping is greatly influenced by
diagonal block scaling. Consider, for example, the matrix[

1 α

β 0

]
in which the zero is mimicking the zero block arising for the pressure in the continuity
equation of the incompressible Navier–Stokes equations. Ifα or β is smaller than the drop
toleranceε, then the dropping of one of these causes the matrix to become singular, which
is undesired. This can be avoided by scaling the equations and the unknowns such thatα

andβ are both of magnitude 1. In practice this singular case is rarely seen, but often more
coefficients for one type of unknown, say those related to the pressure, are dropped than for
those for another type, for example a velocity component. In general, the convergence
of the final method is determined by the part in which most coefficients are dropped,
making the higher fill in the other part of the matrix useless. This imbalance should be
avoided in order to obtain an efficient method.

3.4.2. Performance on the Ocean Model

We show here timing and memory requirements of these methods to compute a typical
steady ocean flow with the model presented in Section 2. The more detailed procedure to
compute a next steady state (u, µ) from one which has already been determined (u0, µ0),
(assuming that the tangent (u̇0, µ̇) is available) when changing a parameterµ through a
choice of1s, is as follows:

(i) Start the Newton process with initial solutionu0 = u0+1su̇0 andµ0 = µ0+ µ̇1s.
(ii) Compute the quantitiesr , rd+1, and the JacobianJ the latter in the form (15). The

Jacobian is assembled from local matrices representing the differential operators on the
stencil as described in [11]. The matrix8 is stored in compressed row storage (CRS)
form [34].

(iii) Solve the two systems (17) with the MRILU method. Since the matrix for both
systems is the same, only one factorization is made and hence one preconditioning matrix
is constructed. The GMRES or BICGSTAB iteration is stopped when the absolute residue
is smaller than 10−6.

(iv) Update the solutionuk+1 = uk +1uk, µk+1 = µk +1µk within the Newton
iteration.
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TABLE I

Three Different Choices of Column and Row Scaling

Coefficients of the Matrix Φ Appearing in (15)

Scaling u v w p T S

1 Column 1. 1. 100. 1. 100. 10.
Row dφ dθ dz dz∗ .01 .01 .1

2 Column 1. 1. 100. 1. 10. 1.
Row dφ dθ dz dz∗ .01 .1 1.

3 Column 1. 1. 10. 1. 100. 10.
Row dφ dθ dz dz∗ .1 .01 .1

(v) Repeat steps (ii) to (iv) until the Newton process converges, using a tolerance in the
residue of 10−6.

The most time-consuming step is the solution of the linear systems during step (iii) above.
It appears necessary to rescale the rows corresponding to the continuity, temperature, and
salinity equations to get a more balanced dropping as explained above. For this purpose,
also the columns associated with the vertical velocity, temperature, and salinity are rescaled.
Typical scaling factors used are listed in Table I, wheredφ, dθ , anddz are the grid sizes
in zonal, meridional, and vertical direction. There are as many scaling coefficients as the
number of equations per grid point. For simplicity, the same scaling is applied to each
diagonal block although this may not be the best choice. The scaling difference between
choice 1 and 2 is only in the temperature and salinity equations, whereas that between 1
and 3 is in the continuity and vertical momentum equations.

As a typical case, we take the starting pointu0 as the point labeled (a) in Fig. 4a be-
low, γ is chosen as the control parameter, and a step-size of1s= 0.1 is considered.
The spatial resolution for this case is 20× 20× 16, which gives 38, 400 unknowns. It
takes four Newton iterations to converge to the next steady solution. Table II shows the

TABLE II

The Effect of the Drop Toleranceε and the Type of Scaling (as in Table I) on the Timing

of an Average Newton Step During Continuation of Steady States

Scaling ε (×103) 0.6 1.2 2.4 4.8 9.6

1 Time (sec) 389 245 208 * *
Max. nonzero 328 220 148 * *
Max. iteration 20 33 55 * *

2 Time (sec) 299 232 365 * *
Max. nonzero 232 170 113 * *
Max. iteration 40 55 150 * *

3 Time (sec) ** 723 340 253 513
Max. nonzero ** 387 266 194 124
Max. iteration ** 21 32 51 300

Notes.Within the Newton step, the MRILU preconditioner is called once and the BICGSTAB method is called
twice, since two linear systems with different right-hand sides for the same matrix have to be solved, according to
(17). A single* entry indicates that the iterative process did not converge, while** indicates that the preconditioner
required too much memory.
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TABLE III

CPU Time and Memory Used for Different Resolutions for One

Newton Step Starting from Trivial Solution, with ε = 2.4× 10−3

Resolution CPU Time Memory Used Unknowns Time/unknown

10× 10× 16 29 s 122 MB 9,600 3.0× 10−3

20× 20× 16 194 s 286 MB 38,400 5.1× 10−3

30× 30× 16 1527 s 712 MB 86,400 1.7× 10−2

effect of the drop tolerance and the different scalings on the performance of MRILU
(combined with BICGSTAB) during step (iii). Maximum values were taken over the four
Newton steps, and the test was done on a Compaq XP1000 500MHz workstation with 1 GB
memory.

For each value of the drop tolerance, we have also listed the maximum number of
BICGSTAB iterations and the maximum of the average number of nonzero elements per
row in the incomplete LU factorization, the latter being an indicator of the memory require-
ments for the preconditioner. For the scaling 1, increasing the drop tolerance reduces the
memory requirements while increasing the number of iterations. Increasingε by a factor 2
typically doubles the number of BICGSTAB iterations, but decreases the time for the pre-
conditioner. Although the drop toleranceε = 2.4× 10−3 gives the fastest convergence for
the BICGSTAB iteration, this iteration does not converge forε = 4.8× 10−3. The results
also show that the performance of the linear solver is quite sensitive to the choice of scaling
coefficients. When the coefficients of the vertical momentum and continuity equation are
not scaled properly, the method only converges when the drop tolerance is large. Whenε

becomes too small, too many fill-in occur and the incomplete LU factorization requires too
much memory. A proper scaling of the temperature and the salinity equations can reduce the
memory required (scaling 2), but this does not automatically lead to faster convergence.
The results indicate that it is worthwhile to perform this type of sensitivity analysis for
the method. In principle, the convergence of the Newton process does not depend on the
drop tolerance, when the linear systems are solved accurately enough. However, if the
BICGSTAB residue has not decreased below the desired tolerance due to a large value of
the drop tolerance (for example, because only a maximum number of iterations is allowed),
this can deteriorate the convergence of the Newton process. In the results shown in the next
sections, we have used scaling 1 andε = 1.2× 10−3.

To give an impression how the performance scales with grid size, from the starting solution
u0 = µ0 = 0, one step1s= 0.1 was taken into the direction ofηT . For a drop tolerance
ε = 2.4× 10−3, the CPU-time and memory required to solve the linear systems within one
Newton step is shown in Table III. Although the computational cost for the linear solver for
this problem depends on the parameters chosen, it is observed that the computational cost
per unknown increases substantially with the number of unknowns.

4. RESULTS FOR A SECTOR BASIN

To apply these numerical techniques to the ocean model, a single-hemispheric basin setup
was chosen. The domain is a 60◦-wide sector in longitude, withφW = 290◦ andφE = 350◦
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between latitudesθS = 10◦N andθN = 70◦N, which is comparable in size to the North
Atlantic, and has a constant depthD = 4000 m.

The surface buoyancy forcing is idealized, by prescribing the surface temperatureTS and
the surface freshwater fluxFS as

TS(θ) = cos

(
π

θ − θS

θN − θS

)
(22a)

FS(θ) = cos
(
π θ − θS

θN − θS

)
cosθ

. (22b)

Note that in this case the dimensional meridional temperature difference over the sector
is equal to 2ηT . The freshwater forcing is such that the integral over the surface is zero,
which is a necessary condition for the existence of steady-state solutions. The wind forcing
considered is an idealized profile for the North Atlantic representing a double gyre type
wind stress [7], i.e., in dimensionless form

τφ(θ) = −cos

(
2π

θ − θS

θN − θS

)
; τ θ = 0. (23)

The dimensional temperature profileTS, the freshwater fluxFS, and the wind stress pattern
τφ are shown in Fig. 2. Note that the freshwater flux becomes strongly negative in the
northern region of the basin, because the size of the basin decreases.

Standard values of the dimensional and dimensionless parameters are listed in Table IV.
Although the mixing of heat and salt is modeled in a crude way, by just assuming constant
horizontal and vertical coefficients, the values listed in Table IV are typical for low-resolution
ocean models. Below, we will also consider a case in which these values are increased to
make computation over the different regimes easier. Note that in the standard case, there
is no convective adjustment and the horizontal friction coefficientAH is rather large. The
effect of convective adjustment on the solutions will be considered explicitly by varying
the parameterCa or using the GAP, as explained above.

FIG. 2. Plot of the patterns of the forcing functions for the restoring temperatureTS, the freshwater fluxFS,
and the zonal wind stressτ φ .
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TABLE IV

Standard Values of Parameters Used in the

Numerical Calculations

2Ä= 1.4 · 10−4 [s−1] r0= 6.4 · 106 [m]
τ0= 1.0 · 10−1 [N m−2] D= 4.0 · 103 [m]
F0= 1.0 · 10−7 [m s−1] U = 1.0 · 10−1 [m s−1]
ρ0= 1.0 · 103 [kg m−3] 1T = 1.0 [K]
αT = 1.6 · 10−4 [K−1] τT = 75 [days]
AH = 1.6 · 107 [m2 s−1] AV = 1.0 · 10−3 [m2 s−1]
KH = 1.0 · 103 [m2 s−1] KV = 1.0 · 10−4 [m2 s−1]
1S= 1.0 [] αS= 7.6 · 10−4 [−]
Cp= 4.2 · 103 [J kg s−1] S0= 35.0 [−]

g= 9.8 [m s−2] T0= 15.0 [K]
Hm= 250 [m] K c

V = 0.0 [m2 s−1]

Ra= 4.2 · 10−2 λ= 7.6
γ = 2.6 · 10−2 P0

H = 1.5 · 10−3

EH = 2.7 · 10−3 P0
V = 3.9 · 10−4

EV = 4.3 · 10−7 B= 10
ηT = 10.0 ατ = 2.7 · 10−2

Ca= 0.0 εR= 1.1 · 10−4

Note. Convective adjustment is turned off in the standard case.

The value ofAH is bounded from below by the thickness of the boundary layers which
develop near the continents. Near the western boundary, the Munk frictional boundary layer
thickness at a latitudeθ0 scales with(AH/β0)

1/3, whereβ = 2Ä0 cosθ0/r0 monitors the
variation of the Coriolis parameter. With a typical horizontal resolution of 3◦, this leads
to a typical lower bound ofAH = 2.5× 104 m2 s−1 at θ0 = 45◦. However, the thickness
of the Ekman layers near the continental walls have a typical width of(AH/ f0)

1/2, where
f0 = 2Ä0 sinθ0, which restricts the value ofAH to be larger than 8× 106 m2 s−1. To be on
the safe side, we took a value twice the latter one. In typical ocean models, values much
smaller are taken, but it has been shown that this leads to numerical waves near these bound-
aries which show up as wiggles in the steady-state solutions [23, 49]. It has furthermore
been shown that this large value ofAH does not affect the dominant geostrophic/hydrostatic
balances over most of the domain. Consequently, forAH = 1.6× 107 m2 s−1, the “classi-
cal” 1/3 power law is found in the relation between the overturning strength and the surface
buoyancy forcing.

4.1. Basic Bifurcation Diagrams

In the first set of computations, steady states are computed as a function of the strength
of the freshwater fluxγ . By plotting a norm of the solution versus this control parameter,
for every steady state computed, a so-called bifurcation diagram is obtained. As a norm, the
dimensional maximum of the meridional overturning streamfunction (9M ) is chosen, which
is computed as follows. The nondimensional overturning streamfunction9 is defined by

v̄ = ∂9

∂z
; w̄ = −∂9

∂θ
, (24)
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where

v̄ =
∫ φE

φW

v cosθ dφ; w̄ =
∫ φE

φW

w cosθ dφ.

With the scaling used, the maximum dimensional volume transport9M = r0U D max|9|
and this is expressed in Sverdrups (Sv), where 1 Sv= 106 m3 s−1.

As a starting point, the two-dimensional case is considered, with zero wind forcing
(ατ = 0) and no rotation (η f = 0). Zonally independent solutions can be found because of
the free-slip boundary conditions on the east–west boundaries. For three different horizontal
resolutions, 6◦, 3◦, and 1.5◦, each case with 16 equidistant vertical levels, the bifurcation
diagrams are plotted in Fig. 3c. For this case, a valueKV = 10−3 m2 s−1 and KH = 8×

FIG. 3. (a)–(b) Meridional overturning streamfunctions9(θ, z) for solutions at points marked (a) and (b)
in panel (c) on the curve for 3◦ resolution. (c) Bifurcation diagram for different horizontal resolutions and fixed
16 vertical levels. Maximum of the meridional overturning streamfunction (9M ) in Sv versus the strength of the
freshwater forcing (γ ).
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106 m2 s−1 were taken. The structure of the bifurcation diagrams, with two saddle node
bifurcations introducing a region of multiple equilibria is in correspondence with those
from box-models [39, 42]. The structure of the multiple equilibria is found for all the
resolutions in Fig. 3c. However, the coarsest resolution results show spurious saddle node
bifurcations due to numerical errors; these disappear on the finer grids.

A horizontal grid spacing of 3◦ appears sufficient to capture the structure of the two-
dimensional flows. Whenγ is small, the circulation is predominantly forced by the merid-
ional temperature difference and the circulation is from equator to pole as in Fig. 3a, which
shows the solution at point (a) in Fig. 3c. Because of the realistic temperature difference
but the absence of rotation, the overturning is much too large compared to reality. The
first saddle node bifurcation occurs atγ = 0.7 and an unstable branch exists down to the
second saddle node atγ = 0.4. Along this branch, the solution changes from tempera-
ture controlled, with overturning in the north, to salt controlled with overturning in the
south. On the stable branch for largerγ , the surface flow is from pole to equator and hence
predominantly forced by the meridional salinity gradient (Fig. 3b).

The bifurcation diagram obtained with 3◦ horizontal resolution in Fig. 3 is replotted in
Fig. 4a as the dotted curve. The “deformation” of this bifurcation diagram when rotation
is added (by increasingη f from zero to one) and wind forcing (increasing the value ofατ

from 0 up to its standard value) shows that with rotation, the multiple equilibria structure
disappears (dashed curve in Fig. 4a). The addition of wind does not change the bifurcation
diagram (drawn curve in Fig. 4a) qualitatively, although the strength of the overturning
changes.

In Fig. 4b, the bifurcation diagram for standard values of parameters as in Table IV
is plotted, which again shows the typical multiple equilibria structure also found in the
high thermal diffusion two-dimensional case (Fig. 3a, dotted curve). Note that by decreas-
ing the thermal diffusivityKV , the overturning has decreased substantially, because of
a reduction of the overall meridional buoyancy gradient. Consequently, the range ofγ

where the multiple equilibria occur is shifted to much smaller values. The results indicate
that there is a qualitative correspondence between three-dimensional solutions and two-
dimensional solutions (and eventually box models) with respect to the existence of multiple
equilibria [28]. However, the regimes of existence in parameter space may substantially
differ.

To show the main characteristics of the three-dimensional flows, in addition to the over-
turning streamfunction, also the velocity field at 250-m depth and meridional sections of the
density and velocity field near the eastern boundary (where the largest gradients in the solu-
tions appear) atφ = 347◦ are plotted. The solution at point (a) in Fig. 4a has an overturning
of about 24 Sv (Fig. 5a). The main sinking area is located near 50◦N (Figs. 5b–5d) and
the flow has a strong zonal component at all latitudes. In the upper layer flow, one can see
the effect of the Ekman mass transport, which is always perpendicular and to the right of the
wind. For example, at 40◦N the wind is directed eastward, which gives a southward Ekman
transport. In the low latitude area, the thermally driven overturning and the Ekman trans-
port are in the same direction and hence the northward flow is stronger. Because there is no
convective adjustment, the flow is not stably stratified (Fig. 5c), which causes the southerly
position of the sinking region (Fig. 5d). Upwelling occurs mainly near the southern and
western boundary (Fig. 5b) and the downwelling is concentrated in a relatively small area
near the eastern boundary and in the central part of the basin.
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FIG. 4. (a) ‘Deformation’ of the bifurcation diagram for the two-dimensional high diffusion case (KH =
8× 103 m2 s−1 and KV = 10−3 m2 s−1) for η f = 0 and no wind (dotted curve) to the bifurcation diagram for
η f = 1 and full wind (drawn curve). An intermediate result, where wind forcing is absent (withη f = 1) is also
shown (dashed curve). For all curves, the maximum of the meridional overturning streamfunction (9M ) is plotted
versus the strength of the freshwater forcing (γ ). (b) Bifurcation diagram for standard values of parameters as in
Table IV for the case where both wind and rotation are included.



FIG. 5. (a)–(d) Flow pattern of the steady solution at the point labeled (a) in Fig. 4a. (e)–(f) Flow pattern
of the steady solution obtained from (a)–(d) withCa = 250. (a) and (e) Meridional overturning stream function
(in Sverdrups). (b) and (f) Velocity field near the surface (at 250 m depth). In this plot, vectors indicate the
horizontal velocity(u, v) at this depth and the contours represent the dimensionless vertical velocity,w. Solid
lines represent upwelling (flow out of the plane), dashed lines downwelling (flow into the plane). (c) and (g)
Density (dimensionless) and (d) and (h) velocity plot for a north-south vertical plane at a grid point just west from
the eastern boundary (φ = 347◦). In the latter picture, the vectors indicate the(v, w) velocity field, whereas the
contours represent the zonal velocity,u (again dimensionless).
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For comparison, withCa = 250 (and for other parameter having the same values), the
solution at point (a) in Fig. 4a transforms into that shown in Figs. 5e–5h. The enhanced
mixing causes the overturning to extend to the northern boundary (Fig. 5e) and the strength of
the overturning increases from about 24 Sv to 39 Sv. The surface velocity field is only slightly
changed and mainly the position of the sinking region has shifted northward (Figs. 5f–5h).
The stratification is statically stable, except in the far north (Fig. 5g).

In the standard case (Fig. 4b), the solutions for the location labeled (c) are shown in
Fig. 6. For the standard caseCa = 0, the overturning flow (about 8 Sv) now extends to the
northern boundary (Figs. 6a and 6b). The effect of a smaller value ofKV is clearly seen in
the vertical structure of the density field which is much more confined to the upper layers
(Fig. 6c). The latter holds also for the flow field and consequently the sinking area is more
confined to the north (Fig. 6d) than for the higherKV flows in Fig. 5. For the same value
of the parameters, the completely statically stable solution, computed with the GAP, has
an overturning of 12 Sv (Fig. 6e). The flow field and density field are fairly similar to the
statically unstable solution, except in the northern regions (Figs. 6f–6h).

In each of the cases in Fig. 4, the flow becomes salinity controlled at largerγ , which leads
to a southern sinking solution. For example, at the location labeled (b) in Fig. 4a, the sinking
region of this solution (not shown) is located near 20◦N, whereas the overturning is about
30 Sv. Most of the downwelling occurs in the southern and western part of the basin.

5. STABILITY OF STEADY STATES

In the previous section, it was shown that branches of steady states could be computed
as a function of the freshwater flux strengthγ using continuation methods. In this section,
the stability of the solutions on these branches is addressed by solving the linear stability
problem with the Jacobi–Davidson QZ method. Part of the (drawn) branch of solutions in
Fig. 4a is replotted in Fig. 7a, where the location of point (a) is again labeled. The stability
of the solutions is now indicated by the line style: a solid line style indicates stability while
a dotted linestyle denotes an unstable branch. Bifurcations are indicated by markers and a
triangle indicates a Hopf bifurcation.

The real and imaginary part of an eigenvectorx= xR± i xI corresponding to a complex
conjugate pair of eigenvaluesσ = σr ± i σi provide the time periodic disturbance structure
P(t) with angular frequencyσi and growth rateσr which oscillates around the steady
state, i.e.,

P(t) = eσr t [xR cos(σi t)− xI sin(σi t)] . (25)

The evolution of this perturbation can be followed by looking for example atP(−π
2σi

) = xI

and then atP(0) = xR.
For the high diffusion case, the real part (marked with a diamond) and imaginary part

(marked with a square) of the “most dangerous” modes are plotted in Fig. 7b, with a corre-
sponding line style indicating the same eigenpair. Atγ = 1.55× 10−2, the left endpoint of
the curve in Fig. 7a, the first mode (dotted curve in Fig. 7b) is stationary with slightly negative
real part. The next “most dangerous” mode is an oscillatory mode (drawn curves in Fig. 7b)
having a frequency ofσi = 0.027, which corresponds to a periodP = 2πr0/(Uσi ) ≈
400 years. Whenγ increases, the stability of these modes is not affected much, but an-
other oscillatory pair shows up. This mode destabilizes nearγ = 5.07× 10−2, the latter



FIG. 6. (a)–(d) Flow pattern of the steady solution at the point labeled (c) in Fig. 4b. (e)–(f) Flow pattern
of the steady solution obtained from (a)–(d) with the GAP. (a) and (e) Meridional overturning stream function
(in Sverdrups). (b) and (f) Velocity field near the surface (at 250 m depth). In this plot, vectors indicate the
horizontal velocity,(u, v) at this depth and the contours represent the dimensionless vertical velocity,w. Solid
lines represent upwelling (flow out of the plane), dashed lines downwelling (flow into of the plane). (c) and (g)
Density (dimensionless) and (d) and (h) velocity plot for a north-south vertical plane at a grid point just west from
the eastern boundary (φ = 347◦). In the latter picture, the vectors indicate the(v, w) velocity field, whereas the
contours represent the zonal velocity,u (again dimensionless).
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FIG. 7. (a) Bifurcation diagram for the caseη f = 1.0 andCa = 0, similar to the drawn curve in Fig. 4a.
The stability of the steady solutions is now indicated by its line style: a solid line style indicates stability while
a dotted linestyle denotes an unstable branch. Bifurcations are indicated by markers, a triangle indicating a Hopf
bifurcation. (b) Real (σr ) and imaginary (σi ) part of the “most dangerous” eigenvalues along the branch in (a).
Similar linestyle indicates the same eigenpair and real and imaginary parts are labeled.

corresponding to the location ofH1 in Fig. 7a. The time scale of oscillation of this mode
(σi = 2.92) is about 4 years. In the high diffusion case, the decadal mode turns out to be sen-
sitive to the changes in the stratification in the northern basin arising through the application
of convective adjustment is applied. However, the centennial modes and the nonoscillatory
mode are very robust.
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TABLE V

Eigenvaluesσ = σr ± iσi of the Most Dangerous Eigenmodes

for (1) the Solution in Figs. 6a–6d under Restoring Conditions

and (2) for the Solution in Figs. 6e–6h under Prescribed Flux

Conditions

Eigenvalue σ 1
r σ 1

i σ 2
r σ 2

i

1 −3.5× 10−3 0.0 0.0 0.0
2 −2.3× 10−2 0.0 −1.6× 10−2 0.0
3 −2.5× 10−2 0.0 −2.5× 10−2 0.0

4–5 −2.6× 10−2 ±1.4× 10−2 −2.8× 10−2 ±1.7× 10−2

Note.An entry ‘0.0’ indicates a value smaller than 10−5.

In the standard case, the first six eigenvalues determining the stability of the solution at
location (c) in Fig. 4b are shown in Table V. The first three of these modes are nonoscillatory
modes, but the next two form a complex conjugate pair with centennial oscillation period.
The overturning streamfunction and the velocity field at mid-depth of this oscillatory mode
are plotted in Figs. 8a–8d. These patterns are very similar to the overturning oscillation found
in two-dimensional models [12], which are caused by the propagation of salinity anomalies
along the mean overturning flow. The oscillation can be seen as a periodic weakening and
strengthening of the basic state overturning.

In Table V, also the leading eigenvalues are shown for the most “realistic” case within
this idealized model and geometry. The stability is computed of the completely statically
stable solution shown in Figs. 6e–6h under prescribed flux conditions for the temperature.
For the latter, the usual procedure is to diagnose the heat flux from the steady state and
compute the stability under this diagnosed flux [18]. Because the perturbation temperature
is determined up to an additive constant, now an eigenvalue zero must appear (confirmed
numerically in Table V). The next two eigenvalues are real and eigenvalues 4 and 5 form a
complex conjugate pair, having approximately the same oscillation frequency and growth
rate as the centennial mode in Figs. 8a–6d. Patterns of the overturning and mid-depth
velocity of this oscillatory mode are also plotted in Figs. 8e–8h and show indeed a close
correspondence with those in Figs. 8a–8d.

6. TRANSIENT THERMOHALINE FLOWS

In this section, examples of transient flows, computed with the implicit time-stepping
method, are shown. Having the information of the steady states and their stability imme-
diately provides guidelines for the interesting areas in parameter space. The latter is the
region betweenH1 andH2 in Fig. 7a, where limit cycles are expected and that arise through
supercritical Hopf bifurcations.

However, first the transient behavior due to parameter variation will be considered. As an
example, point (a) in the bifurcation diagram in Fig. 4a is taken as initial condition and at
t = 0, the parameterCa is increased from 0 to 250. The development of the flow with time
toward the steady solution in Figs. 5e–5h is monitored and the maximum overturning9M is
plotted in Fig. 9a. Each time step is indicated with a marker and the dimensional values are
given in years. Initially, relatively small time steps have to be taken, because the solution
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FIG. 8. (a)–(d) Oscillatory eigenmode pair 4–5 for the solution in Fig. 6a–6d under restoring conditions.
(e)–(h) Same eigenpair but now for the statically stable solution in Fig. 6e–6h under prescribed flux conditions.
(a) and (e) Real part of the meridional overturning stream function. (b) and (f) Imaginary part of the meridional
overturning stream function. (c) and (g) Real part of the velocity field at 2000 m depth. (d) and (h) Imaginary part
of the velocity field at 2000 m depth.
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FIG. 9. (a) Overturning strength in Sverdrups versus dimensional time in years. The starting point is point
(a) in Fig. 4a and initially, the parameterCa is set at the value 250. Each point indicated gives the actual time step
taken. (b) Plot of the dimensionless buoyancy production〈wB〉 (Volume integral of vertical velocity,w, times
buoyancy,B = Ra(T − λS)) versus time. The trajectory started at the same point as in (a), where the steady
state is unstable forCa = 0. Here, a limit cycle is reached after an initial growth time of the instability of about
100 years.

changes quite a bit in the northern region. However, during the approach to equilibrium,
time steps of up to 50 years can be taken. This clearly demonstrates the big advantages of
implicit techniques when investigating sensitivity of solutions to parameter changes.

Results of total time to compute a solution for a certain time step1t are presented in
Table VI, where the initial condition is the last computed point in Fig. 9a. Here again, the
scaling 1 in Table I and the value of the drop-toleranceε = 1.2× 10−3 was used. Increasing
the time step by a factor 100 increases the total time only be a factor 4, which is mainly
due to the increased number of Newton iterations needed. The fill and also the number of
iterations in BICGSTAB are not much affected by the magnitude of the time step.

As a second example, we investigate the finite amplitude decadal oscillation by starting
with a steady solution at point (a) in Fig. 7a and perturb it slightly. After an initial growth
time of the instability, which is about 100 years, a periodic orbit is reached and it can be
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TABLE VI

The effect of the Time Step on the Performance of the Newton

Process and Iterative Solver During the Implicit Time Integration

1t (year) 0.5 1.0 4.0 20.0 50.0

Time (sec) 50 53 73 98 198
Max. nonzero 129 133 138 143 144
Max. iteration 16 16 16 22 29
Newton It. 3 3 4 5 10

followed with a time step of 0.5 year. The period is about 4 years, which is in correspondence
with the period determined from the eigenmode at Hopf bifurcation. Here, the combination
of continuation techniques, eigenvalue solvers, and implicit time integration clarifies the
origin of the oscillation as an instability of the steady flow.

The time steps, such that sufficiently accurate solutions are obtained during the im-
plicit time integration, can be determined by comparing the results of computations over a
certain time interval with several (in most cases three) different time steps. With the Crank–
Nicholson scheme being second-order accurate, in this way also the absolute accuracy can
be determined. For the case in Fig. 9a, different time steps are therefore taken in the begin-
ning of the integration than those in later stages. For the case in Fig. 9b, a fixed time step
was taken since the solution oscillates with fixed frequency.

7. DISCUSSION

In this paper, we have presented a new fully implicit model of the thermohaline ocean
circulation suitable for the study of long time scale variability, such as centennial and larger
time scale oscillations. The results shown for a sector model are the first of its kind, where
fully implicit techniques are used and where indeed very long time step can be taken. This
makes the approach very well suited for sensitivity studies, similar to those which have
been done for the two-dimensional flows [12, 44].

The key to being able to use these long time steps is the solution of the large linear
systems of equations with iterative solvers. The combination of the MRILU preconditioning
technique with the BICGSTAB solver enables one to compute solutions to the steady
equations. Tuning of the parameters in MRILU is required and rescaling of the Jacobian
matrix is necessary to achieve efficiency. Once this has been done for the steady case, the
performance of MRILU improves in the time-dependent implicit time stepping case, since
the Jacobian matrix becomes better conditioned. All computations in the paper, which are
still for a low resolution ocean model set-up (3◦ horizontally and 16 levels vertically), could
therefore be performed on a XP1000 500 MHz workstation with 1 GB internal memory.
The use of MRILU is not restricted to this particular application, since it has a large amount
of flexibility. It can be used on both structured and unstructured grids, with equidistant and
nonequidistant grid spacing and there is a recipe available to tune the parameters within the
factorization step.

The combination of a continuation method for computing steady states, the Jacobi–
Davidson QZ method for the linear stability problem, and implicit time-stepping techniques
for monitoring the time-dependent flow provides a powerful tool to understand the structure
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of the thermohaline flow solutions in parameter space. For the simple single basin configu-
ration, the results presented here show that one is able to trace steady solution branches into
a relevant parameter regime and to determine the most dangerous eigenmodes. It shows that
multiple equilibria in the high-diffusion, two-dimensional case disappear when rotation is
taken into account, but that these reappear in the rotational standard (low diffusion) regime.

In addition, decadal oscillations appear as instabilities on the three-dimensional wind
and thermohaline driven flow. For the high diffusion case considered here, the unstable
stratification in the northern region of the basin turns out to be important, since these modes
stabilize when the steady flow is statically stable. However, in the standard case, these type
of modes arise as interdecadal instabilities [40] when the value ofKH is decreased. These
modes can indeed be related to the many examples of (inter)decadal variability found in
low resolution ocean models [21]. The results also indicate that centennial oscillations are a
very robust feature within these models, but they turn out to be stable under the forcing and
parameters chosen here. It appears that these modes become exited in a slightly different
parameter regime (smallerKH ) when stochastic noise is included in the heat flux forcing
to give centennial oscillatory behavior, superposed on the dominant interdecadal behavior.

The ocean model used here is one which contains the basic fluid dynamics, but it is
still some distance from “state of the art” low-resolution ocean models. However, there is
no principle difficulty to bridge this gap and in effect, many of the intermediate steps have
already been taken. The only technical difficulty comes from the computation of the Jacobian
matrix and the ability to solve the linear systems of equations. Continental geometry and
bottom topography can be easily included, by substituting equations (representing boundary
conditions) at matrix level, similar to that done in shallow water models [35]. There is also no
principle difficulty in implementing a nonlinear equation of state, although a dependency of
the density on pressure complicates matters technically. The ocean model has already been
coupled to an energy balance atmosphere model, and changes in surface boundary conditions
are easily implemented. As in many ocean models, however, the issue of representing the
nonresolved scales (mixing) is difficult. There is no principle difficulty in including a
rotation of the mixing tensor to represent the dominant mixing along isopycnal surfaces
and to reduce diapycnal mixing. Also, a full parameterization as suggested in [15] can be
included, although technical difficulties in calculating the Jacobian have to be overcome.
Periodic boundary conditions can also be handled without any trouble, because the MRILU
method, used to solve the linear systems, does not require any preferred sparsity (i.e.,
banded) structure of the Jacobian matrix.

The results presented here are for a model configuration, for which the value of the
horizontal friction is orders of magnitude larger than that considered realistic for the ocean
and two orders of magnitude larger than those used in low-resolution ocean models. This is
necessary because of problems in resolving the horizontal (steady) Ekman boundary layers,
which contain large velocity gradients. In explicit models, the time step is small enough to
allow adjustment of numerical errors due to nonresolved boundary layers through Kelvin-
type waves. The consequence is that no wiggles appear, but the solutions will effectively
never reach steady state. The issue how to handle these nonresolved boundary layers in a
steady state or large time step set-up is outside the scope of this paper. We want to stress
that high viscosity is not a restriction of the use of the methodology of continuation and
implicit time stepping, which has been the focus of this paper. When the horizontal viscosity
is taken spatially dependent and artificially increased only near the southern and eastern
boundaries, flows can be computed for much smaller interior horizontal viscosities.
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Even with the present restriction of these fully implicit models to high viscosity, many in-
teresting and physically relevant problems still can be tackled. Indeed, for high viscosity, the
flows computed satisfy geostrophic and hydrostatic balances, but horizontal friction enters
at leading order in the interior potential vorticity balance. Under wind forcing only, the inte-
rior flow has a small east–west asymmetry, with little developed western boundary current.
When the horizontal friction is decreased, the east–west asymmetry and the strength of the
gyres increases. However, down to horizontal viscosity values used in low-resolution explicit
ocean models, there will be a unique wind-driven solution and the nonlinear western bound-
ary current regime is not yet reached. Although potentially this change of flow may have a
strong impact on the steady states of the full three-dimensional flows in these sector models,
we think that there will be no changes in the qualitative structure of the bifurcation diagrams.

The analysis of the physical mechanisms of the existence of both the multiple equilibria
and the oscillatory modes of variability [40, 47] indicates that these phenomena are thermo-
dynamically controlled. For example, the salt-advection feedback is responsible [11] for the
occurrence of the multiple equilibria, while for the (inter)decadal modes of variability, east–
west propagation of density anomalies and their effect on the meridional and zonal overturn-
ing are essential [40]. In these cases, the details of the momentum balances are not crucial as
long as a flow response is generated to density anomalies. For essentially three-dimensional
features, such as the (inter)decadal oscillations, a geostrophic/hydrostatic response is re-
quired, which can be represented in the high viscosity models used here [40]. Other features
(multiple equilibria, centennial oscillations) occur already in two-dimensional models, some
of which have only a frictional/hydrostatic momentum balance [8, 12, 42, 44]. However, cer-
tainly the strength of the flow is dependent on the viscosity and hence quantitative changes
may occur in the bifurcation diagrams. Hence, it is expected that lowering the horizontal
viscosity will introduce shifts in bifurcation points but that no new flow regimes of ocean
circulation regimes will appear.

To summarize, while the techniques are applied here only to a relatively simple model,
the numerical methods seem capable of attacking the problems of the physics of multiple
equilibria and low-frequency ((inter)decadal to centennial time scale) oscillations of the
large-scale ocean circulation systematically. This is important for understanding the factors
which control stability and variability of the thermohaline ocean circulation.
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